FISEVIER

Contents lists available at ScienceDirect

Public Health

journal homepage: www.elsevier.com/locate/puhe

Review Paper

Knowledge, attitudes, and practices of the general population about Coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis with policy recommendations

S. Saadatjoo ^a, M. Miri ^a, S. Hassanipour ^b, H. Ameri ^c, M. Arab-Zozani ^{a,*}

- ^a Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
- b Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- ^c Health Policy and Management Research Center, Department of Health Services Management, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

ARTICLE INFO

Article history: Received 10 November 2020 Received in revised form 1 February 2021 Accepted 3 March 2021 Available online 24 March 2021

Keywords: COVID-19 Knowledge Attitude Practice Systematic review Policy recommendations

ABSTRACT

Objectives: This study aimed to investigate and synthesize the current evidence on knowledge, attitudes, and practices (KAPs) of the general population regarding COVID-19.

Study design: This is a systematic review and meta-analysis.

Methods: We conducted a systematic search on PubMed/LitCovid, Scopus, and Web of Sciences databases for papers in the English language only, up to 1 January 2021. We used the Joanna Briggs Institute checklist developed for cross-sectional studies to appraise the quality of the included studies. All stages of the review conducted by two independent reviewers and potential discrepancies were solved with a consultation with a third reviewer. We reported the result as number and percentage. A meta-analysis conducted using a random effect model with a 95% confidence interval.

Results: Forty-eight studies encompassing 76,848 participants were included in this review. 56.53% of the participants were female. The mean age of the participants was 33.7 years. 85.42% of the included studies were scored as good quality, 12.50% as fair quality, and the remaining (2.08%) as low quality. About 87.5% examined all three components of the KAPs model. The knowledge component was reported as good and poor in 89.5% and 10.5% of the included studies, respectively. Of the studies that examined the attitude component, 100% reported a positive attitude. For the practice component, 93.2% reported satisfactory practice, and 6.8% poor practice. The result of the meta-analysis showed that the overall score of KAPs components about COVID-19 were 78.9, 79.8, and 74.1, respectively.

Conclusions: This systematic review and meta-analysis showed that the overall KAP components in the included studies were at an acceptable level. In general, knowledge was at a good level, the attitude was positive and practice was at a satisfactory level. Using an integrated international system can help better evaluate these components and compare them between countries.

PROSPERO registration code: (CRD42020186755).

© 2021 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

* Corresponding author. Birjand University of Medical Sciences, School of Health, Social Determinants of Health Research Center (SDHRC), Moallem Street, P.Box: 32430076, Birjand, South Khorasan, Iran. Tel.: +98 5632381272, +98 9153317843 (Mobile); fax: +98 5631631651.

Introduction

Coronavirus disease 2019 (COVID-19) was reported on 31st December 2019 from Wuhan, China, and announced by the World Health Organization (WHO) as a pandemic on 11th March 2020.^{1,2} To date (27 January 2021), it was estimated that about 100 million people were infected with COVID-19 worldwide, of which about two million have died.³

COVID-19 is characterized by several flu-like symptoms including fever, respiratory problems (dry cough, shortness of

E-mail addresses: ss.saadatjoo1360@gmail.com (S. Saadatjoo), mmiri1062@gmail.com (M. Miri), soheil.epid@gmail.com (S. Hassanipour), hamery7@yahoo.com (H. Ameri), arab.hta@gmail.com (M. Arab-Zozani).

breath or difficulty breathing, sore throat), chills, headache, and loss of taste. In addition, this disease is much more severe with men, higher age groups, and patients with other pre-existing conditions, such as cardiovascular disease, chronic respiratory disease, diabetes, and hypertension.^{4,5} Based on existing evidence, about 81% of COVID-19 cases are mild, 14% are severe, and 5% are critical. The median time from symptoms onset to clinical recovery is approximately two weeks for mild cases and three to six weeks for severe or critical cases. The incubation period for this disease was reported as 2-14 days based on WHO reports. The mortality rate for this disease is different among countries and was reported between 2% and 5%.^{7,8} The most important ways to prevent this disease are to use a mask and maintain social distance. 9-11 So far, there have been several cases of infection in the general public, especially doctors and medical staff, some of which have led to death.12-14

Considering the extent and progress of COVID-19 disease and its major effects on economic, social, political, and cultural dimensions of all countries, ^{15,16} people with COVID-19 must be motivated, informed, and engaged in all aspects of the disease. From the onset of the disease until now, various studies conducted worldwide have investigated this disease and some of these studies have examined the knowledge, attitudes, and practices (KAPs) of people with COVID-19. Having enough knowledge about a disease can always affect people's attitudes and practices, and on the other hand, negative attitudes and practices can increase the risk of disease and death. Therefore, understanding the general population' KAPs and knowing potential risk factors can help to achieve the outcomes of planned behavior. ^{17,18}

Given the importance of the issue, conducting a review of studies that have examined the KAPs of individuals and summarizing the results can provide solid evidence for decision-makers in all countries to better manage the disease. Thus, this study aimed at conducting a systematic review to synthesize current evidence on KAPs of the general population with COVID-19 worldwide.

Materials and methods

Protocol and registration

We conducted a systematic review of the existing evidence related to KAPs of COVID-19 patients worldwide following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statements (Appendix Supplementary file 1). We also registered a protocol for this systematic review in the International Prospective Register of Systematic Reviews. ²⁰

Eligibility criteria

We included all studies which met the following inclusion criteria: 1) cross-sectional survey; 2) investigate at least one component of the KAPs model regarding COVID-19 disease worldwide; 3) published or in-press original paper; 4) in English; 5) with a sample representative general population. No restrictions were applied to the setting, time, or quality of the study.

Information sources, search and study selection

We search the PubMed/LitCovid, Scopus, and Web of Sciences for papers in the English language only, up to 1 January 2021. We conducted a search in Google Scholar for retrieving studies that were not cited in the abovementioned databases. In addition, the reference lists of the final included articles were hand-searched. The keywords used in the search were attitude, knowledge, practice, awareness, perception, action, COVID-19, coronavirus disease,

SARS-CoV-2, and severe acute respiratory syndrome coronavirus 2. The full search strategy for the PubMed database is provided in Supplementary file 2. When the search was complete, all records were transferred to the Endnote software (V. X8; Clarivate Analytics, Philadelphia, PA) and duplicates were removed. Then, studies based on the title, abstract, and full text were screened by two researchers independently by considering the prespecified eligibility criteria. Disagreements were solved through consultation with a third researcher.

Data collection process and data item

Two researchers independently engaged in the data collection process and extracted data including author, year, journal name, location, study design, data collection tools, sample size, focusing group, mean age or range, gender percent, and result related to KAPs model components. Potential disagreements were solved through consultation with a third researcher.

Quality appraisal

Included studies were critically appraised by two researchers independently. We used the Joanna Briggs Institute checklist developed for cross-sectional studies to appraise the quality of the included studies. This checklist contains eight simple and clear questions that cover topics such as inclusion criteria for sample; details about study subjects and setting; validity and reliability; criteria for measurement of the condition; confounding variables; and statistical analysis. The answer to each questions is yes, no, unclear, and not applicable. Potential discrepancies were resolved by consultation with a third researcher.

Synthesis of results

Descriptive analyses were carried out in most sections and the pooled data reported as a number or percentage for similar data items. We used Microsoft Excel software to design the charts. We categorized the result of each component based on the study by Bdair et al.²³ They categorized each component in two categories as follows: knowledge: (good >50) or (poor <50), attitude: (positive \geq 50) or (negative <50), and practice: (satisfactory \geq 50) or (unsatisfactory <50). The Q-value was applied to discover betweenstudy heterogeneity, and the I² statistic was calculated to assess statistical heterogeneity.²⁴ Based on Cochrane criteria if the heterogeneity was >50, we used the random effect model.²⁵ Although there was heterogeneity between the studies above, this was negligible due to differences in settings as well as the use of different questionnaires. However, we used subgroup analysis based on regions to reduce this heterogeneity.²⁶ In addition, a meta-analysis using a random effect model with a 95% confidence interval (CI) was conducted via CMA software (Version 2) based on the percent reported for each component of the KAPs model of the included studies. Publication bias was assessed using Begg's and Egger's tests and visual inspection of the funnel plot.

Additional analysis

We contacted ten experts in the related field including health promotion, public health, health policy, epidemiology, and behavioral science via email and asked for their opinions on how to increase the levels of these components in the community. Comments were translated verbatim and then analyzed using content analysis. The results of this section are presented as policy recommendations.

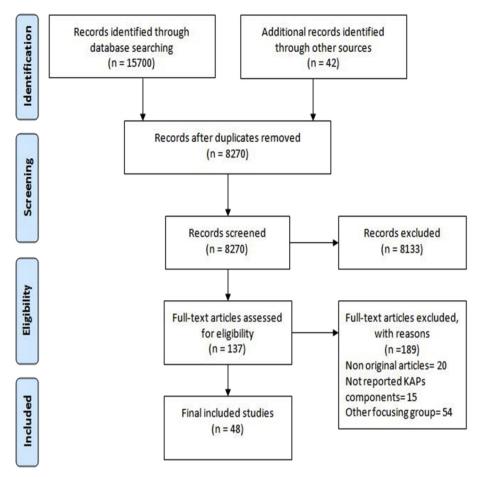


Fig. 1. PRISMA flow diagram.

Results

Study selection

A total of 15,742 records were retrieved from our database search. After removing duplicate, 8270 records were screened by title, abstract, and full text based on eligibility criteria, of which forty-eight studies were included in the final review.^{23,27–73} The PRISMA flow diagram for the complete study selection process is presented in Fig. 1.

Study characteristics

Forty-two studies encompassing 76,848 participants were included. In addition, 56.53% of the participants were female. The mean age of the participants was 33.7 years. Most studies were from Asia, Africa, and America, (Fig. 2A). The most important method of data collection was online questionnaires (Fig. 2B). Most studies examined all three components of the KAPs model, but some studies examined two components or one component. More details about the characteristics of included studies are presented in Table 1.

Quality appraisal

The overall mean quality score of the included studies was 5.70. Of the included studies, 41 studies (85.42%) were scored as good quality (score \geq 6), 6 (12.50%) as fair quality (score 3–5), and

remaining (2.08%) as low quality (score <3) (Fig. 3). The lowest and highest quality scores in the studies were two and six, respectively. None of the studies scored on questions 5 and 6, which were related to identification and deal with confounding variables in the studies (for more details about items see Appendix Supplementary file 3).

Synthesis of results

Among the included studies, 87.5% examined all three components of the KAPs model simultaneously. The most studied component in the studies was the knowledge component with about 100%, followed by attitude and practice with 95.8% and 91.6%, respectively (Table 2, Fig. 4).

Of the studies that examined the knowledge component, 89.5% reported good knowledge, and 10.5% poor knowledge. As well as, of the studies that examined the attitude component, 100% reported a positive attitude. For the practice component, 93.2% reported satisfactory practice, and 6.8% unsatisfactory practice (Table 2, Fig. 5).

Meta-analysis

Based on the meta-analysis, the pooled overall score of KAPs components were 78.9 (95% CI: 96.1, 86.2, P = 0.001), 79.8 (95% CI: 80.8, 88.4, P = 0.001), and 74.1 (95% CI: 56.0, 86.5, P = 0.011), respectively. The results of subgroup analysis based on different continents of Africa, America, and Asia were 74.1, 74, and 83.8% for knowledge, 78.7, 63.2, and 85% for attitude, and 59.6, 78.5, and 81.5

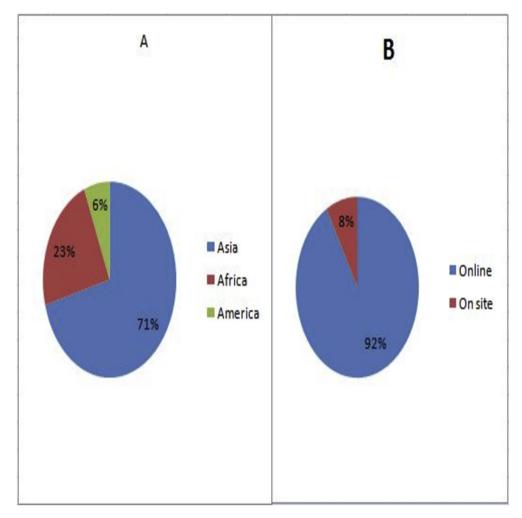


Fig. 2. The percentage of the included studies based on location (A) and data collection methods (B).

for practice components, respectively. The Asia continent had the highest percentage in all three components. The America continent had the lowest percentage in terms of knowledge and attitude, and the Africa continent had the lowest percentage in terms of practice (Table 3). Visual inspection of the funnel plot and results of Begg's (0.068) and Egger's test (0.082) did not showed significant evidence of publication bias (Appendix Supplementary file 4).

Policy recommendations

In accordance with experts, the policy recommendations for promoting the KAP components were as follow: holding training courses through virtual mass media; increase the commitment of government officials and policymakers to help conduct training courses; providing appropriate and evidence-based training content to enhance the components of the KAP; designing an integrated international system for measuring cup levels and comparing it between countries.

Discussion

COVID-19 has had serious, long-term, and sometimes irreparable effects on all aspects of the daily lives of individuals and society. ^{74,75} Getting informed from the knowledge, attitude, and practice of different general population can play a vital role in shaping the prevention behavior against COVID-19, ^{76,77} so the

study of these components in different communities and between different groups seems necessary.

Strength and weakness

One of the most important strengths of this study was that all stages of the study were conducted with two researchers and in all stages, in cases of disagreement, the third person and consensus were used. In addition, registering the protocol of this study and reviewing and modifying it in the PROSPERO platform is the strength of this study. A large number of the included studies did not report the validity and reliability of the questionnaires. The main reason for this is the rush to publish articles related to coronavirus disease. The included studies were from both high- and low-income countries and therefore generalization of results to all countries should be done with caution. On the other hand, owing to the high speed of published at the time of writing the article and the review process, which has been missed. Of course, owing to the high speed of publishing articles, this limitation is inevitable.

Summary of study findings

We found that about 90% of the samples had good knowledge of COVID-19 (overall score: 78.9%). In addition, 100% of the samples were reported positive attitudes regarding COVID-19 (overall score:

Table 1Summary characteristics of the included studies.

Reference (Author, Year)	nce (Author, Journal Location Study Design Data Collec		Data Collection tool	ection tool Sample Size		Mean Age or range	
Adesegun et al., 2020 ²⁷	American Journal of Tropical	Nigeria	Cross-sectional	Online questionnaire/ Google Form	1015	45.9	26.6
Alahdal et al., 2020 ²⁸	Medicine and Hygiene Journal of Infection and Public Health	Saudi Arabia	Cross-sectional	Online questionnaire/ Google Form	1767	25	18-60+
Al-Hanawi et al., 2020 ²⁹	Frontiers in Public Health	Saudi Arabia	Cross-sectional	Online questionnaire/ SurveyMonkey	3388	41.9	18-60+
Alhazmi et al., 2020 ³⁰	Journal of Public Health Research	Saudi Arabia	Cross-sectional	Online questionnaire/ Google Form	1513	45	18-60+
Alobuia et al., 2020 ³¹ Amalakanti et al.,	Journal of Public Health Indian Journal of	USA India	Cross-sectional Cross-sectional	Telephone survey Online questionnaire/	1216 1837	48 56.5	18-60+ 16-50+
2020 ³² Ashiq et al., 2020 ³³	Medical Microbiology Bangladesh Journal of	Pakistan	Cross-sectional	Google Form Online questionnaire/	316	46.5	16-40+
Azlan et al., 2020 ³⁴	Medical Science PLOS ONE	Malaysia	Cross-sectional	Google Form Online questionnaire/	4850	42.1	34
Baig et al., 2020 ³⁵	PLOS ONE	Saudi Arabia	Cross-sectional	Survey Monkey Online questionnaire/	2117	52.5	18-61+
Bates et al., 2020 ³⁶	Journal of Communication in Healthcare	Colombia	Cross-sectional	Google Form Online questionnaire	482	28.1	18-50+
3dair et al., 2020 ²³	Asia Pacific Journal of Public Health	Saudi Arabia	Cross-sectional	Questionnaire	575	57.4	NR
Elements, 2020 ³⁷	JIMIR public health and surveillance	USA	Cross-sectional	Online questionnaire/ MTurk platform	1034	58.2	37.11
Domiati et al., 2020 ³⁸	Frontiers in Medicine	Lebanon	Cross-sectional	Online questionnaire/ Google form	410	42	-18-65+
layeh et al., 2020 ³⁹	PLOS ONE	Jordan	Cross-sectional	Online questionnaire/ Google Form	2104	24.6	18-55+
allahi et al., 2020 ⁴⁰	Journal of Military Medicine	Iran	Cross-sectional	Online questionnaire	836	27.5	-25-55+
erdous et al., 2020 ⁴¹	PLOS ONE	Bangladesh	Cross-sectional	Online questionnaire/ Google form	2017	59.8	12-64
Sao et al., 2020 ⁴²	BMC Public Health	China	Cross-sectional	Online questionnaire survey/Wenjuanxing platform	2136	21.9	33.1 ± 8.8
Ghazi et al., 2020 ⁴³	Public Health Education and Training	Iraq	Cross-sectional	Online questionnaire/ Google Form	272	58.1	36.35 ± 7.87
laftom et al., 2020 ⁴⁴	Infection and Drug Resistance	Northern Ethiopia	Cross-sectional	In site/Self- administered questionnaire	331	69.5	18-69
lager et al., 2020 ⁴⁵	PLOS ONE	Egypt, Nigeria	Cross-sectional	Online survey/Google Form	1437	52.5	18-59+
lezima et al., 2020 ⁴⁶	Eastern Mediterranean Health Journal	Sudan	Cross-sectional	Online survey/Google Form	812	54.2	18+
Ionarvar et al., 2020 ⁴⁷	International Journal of Public Health	Iran	Cross-sectional	In site/interview	1331	47.3	36 ± 13.9
Hossain et al., 2020 ⁴⁸	PLOS ONE	Bangladesh	Cross-sectional	Online/email.public groups on Facebook	2157	54.1	33.48 ± 14.65
adoo et al., 2020 ⁴⁹	Journal of Ideas in Health	Iraq	Cross-sectional	Online questionnaire/ Google Form/	877	41.7	all
Kakemam et al., 2020 ⁵⁰	Frontiers in Public health	Iran	Cross-sectional	Online questionnaire/ Porsline	1480	42.8	31.29
Kasemy et al., 2020 ⁵¹	Journal of Epidemiology and Global Health	Egypt	Cross-sectional	Online questionnaire/ Google Form	3712	47.8	23.31 ± 13.28
au et al., 2020 ⁵²	Journal of global health	Philippines	Cross-sectional	Online questionnaire/ SurveyCTO platform	2224	7.3	41.3
Nousa et al., 2020 ⁵³	Sudan Journal of Medical Sciences	Sudan	Cross-sectional	Online questionnaire/ WhatsApp, Telegram groups, Facebook, and Twitter	2336	39.3	17-51+
lgwewondo et al., 2020 ⁵⁴	PLOS neglected tropical diseases	Cameroon	Cross-sectional	Online questionnaire/ WhatsApp, email, websites accounts	1006	46.9	33 ± 11.2
Nicholas et al., 2020 ⁵⁵	The Pan African Medical Journal	Cameroon	Cross-sectional	In site/questionnaire	545	56	18-50+
Pascawati et al., 2020 ⁵⁶	International Journal of Public Health Science	Indonesia	Cross-sectional	Online survey/ WhatsApp	155	49.7	11-60+
Paul et al., 2020 ⁵⁷	PLoS ONE	Bangladesh	Cross-sectional	Online survey/ Facebook and email	1589	60.5	18-45+
Roy et al., 2020 ⁶¹		India	Cross-sectional		662	48.6	29.9 ntinued on next pag

189

Table 1 (continued)

Reference (Author, Year)	Journal	Location	Study Design	Data Collection tool	Sample Size	Male (%)	Mean Age or range
Rahman et al., 2020 ⁵⁸	Asian Journal of Psychiatry Bangladesh Medical Research Council Bulletin	Bangladesh	Cross-sectional	Online questionnaire/ Google Forms Online/Facebook, WhatsApp, Viber self- administered and face to face interview	1549	58	18-60+
Rajeh, 2020 ⁵⁹	The Open Dentistry Journal	Saudi Arabia	Cross-sectional	Online survey/ Facebook, WhatsApp, and Twitter	521	31.7	36.24
Reuben et al., 2020 ⁶⁰	Journal of Community Health	Nigeria.	Cross-sectional	Online survey/emails, WhatsApp and other social media	589	59.6	18-59
Sari et al., 2020 ⁶²	Journal of Community Health	Indonesia	Cross-sectional	Online questionnaire/ Google Forms/ WhatsApp	201	46.3	35.5
Sayedahmed et al., 2020 ⁶³	Scientific African	Sudan	Cross-sectional	Online questionnaire/ via Google	1718	38	12-50+
Sengeh et al., 2020 ⁶⁴ Susilkumar et al., 2020 ⁶⁵	BMJ Open International Journal Of Research In Pharmaceutical Sciences	Sierra Leone India	Cross-sectional Cross-sectional	In site/questionnaire Online questionnaire/ Google Forms	1253 1015	52 49.3	18-60+ 20-60+
Tariq et al., 2020 ⁶⁷	Disaster Medicine and Public Health	Pakistan	Cross-sectional	Online survey/social media and authors own network	2121	13.7	21.8 ± 4.13
Tandon et al., 2020 ⁶⁶	Journal of Family Medicine and Primary Care	India	Cross-sectional	Online questionnaire/ online via mail and social media platforms	323	45.6	33.8
Van Nhu et al., 2020 ⁶⁸	Journal of Community Health	Vietnamese	Cross-sectional	Online survey questionnaire	1999	21.7	18-59
Xu et al., 2020 ⁶⁹	Journal Of Medical Internet Research	China	Cross-sectional	Online survey/ WhatsApp, Twitter	8158	37	18-60+
Yang et al., 2020 ⁷⁰	Journal of Advanced Nursing	China	Cross-sectional	Online questionnaire/ WeChat, Sina Weibo, QQ	919	21.7	18+
Yousaf et al., 2020 ⁷¹	Social Work in Public Health	India	Cross-sectional	Online questionnaire/ WhatsApp, Facebook, and Instagram	516	32.6	16-45+
Yue et al., 2020 ⁷²	Journal of Community Health	China	Cross-sectional	Online questionnaire/ WeChat, QQ	517	46.23	15-60
Zhong et al., 2020 ⁷³	International Journal of Biological Sciences	China	Cross-sectional	Online questionnaire	6910	34.3	16−50≤

*NR: not reported.

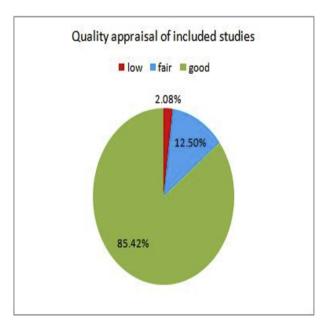


Fig. 3. The percentage of included studies based on quality score.

79.8%) and slightly more than 93% of samples performed satisfactory practices (overall score: 74.1%). The level of knowledge, attitudes, and practices is slightly high in the Asia continent. About 90% of the studies used an online questionnaire to collect data, and the most used platforms included Google form, SurveyMonkey, and Qualtrics. The most important social media through which the questionnaires were distributed were Facebook, WhatsApp, and Telegram. The most important sources for learning and staying up to date about COVID-19 mentioned in the studies were television, social media, the internet, radio, and friend and relatives.

Our result showed a high percentage of knowledge, attitudes, and practices in Asian countries. The probable reason for these higher percentages could be related to the factors such as the initial spread of the virus from this continent and the emergency acts that were taken earlier than other continents in this continent. ^{78,79} However, owing to the lack of studies in developed countries and the change of some factors related to knowledge, attitude, and practice over the past year, the generalizability of these results is low.

The finding of our systematic review demonstrated good knowledge about COVID-19. In most studies, more than 80% of the participants had a good knowledge of issues such as causes, symptoms, ways of transmission, and ways of prevention. In addition, most participants had a high level of

Table 2Results related to coronavirus-related KAPs components of the included studies.

Reference (Author, Year)	Overall level of KAP components				
	Knowledge ^a	Attitudes ^b	Practices ^c		
	Level (%)	Level (%)	Level (%)		
Adesegun et al., 2020 ²⁷	Good (78)	Positive (66)	Satisfactory (60.4)		
Alahdal et al., 2020 ²⁸	Good (58)	Positive (95)	Satisfactory (81)		
Al-Hanawi et al., 2020 ²⁹	Good (81.6)	Positive (77.5)	Satisfactory (52.3)		
Alhazmi et al., 2020 ³⁰	Good (81.3)	Positive (86.6)	Satisfactory (81.9)		
Alobuia et al., 2020 ³¹	Good (59)	Positive (63)	Satisfactory (67)		
Amalakanti et al., 2020 ³²	Good (94.4)	Positive (70)	Satisfactory (77)		
Ashiq et al., 2020 ³³	Good (95.8)	Positive (87.6)	Satisfactory (94.3)		
Azlan et al., 2020 ³⁴	Good (80.5)	Positive (83.1)	Satisfactory (73.4)		
Baig et al., 2020 ³⁵	Good (68.1)	Positive (93.1)	Satisfactory (97.7)		
Bates et al., 2020	Good (79.3)	Positive (63.5)	Satisfactory (91.7)		
Bdair et al., 2020	Poor (51.1)	Positive (51.8)	Satisfactory (76.2)		
Clements, 2020 ³⁷	Good (80.8)	NR	Satisfactory (70.2)		
Domiati et al., 2020 ³⁸	Good (75)	Positive (78.4)	NR		
Elayeh et al., 2020	` ,	` ,			
	Good (60.9)	Positive (50.7)	Satisfactory (66.7)		
Fallahi et al., 2020 ⁴⁰	Good (74.2)	Positive (80.2)	Satisfactory (67.5)		
Ferdous et al., 2020 ⁴¹	Poor (48.3)	Positive (62.3)	Satisfactory (55.1)		
Gao et al., 2020 ⁴²	Good (91.2)	Positive (98)	Satisfactory (96.8)		
Ghazi et al., 2020 ⁴³	Good (95.2)	NR	Satisfactory (NR)		
Haftom et al., 2020 ⁴⁴	Poor (42.9)	Positive (NA)	Satisfactory (NA)		
Hager et al., 2020 ⁴⁵	Good (61.6)	Positive (68.9)	Satisfactory (62.1)		
Hezima et al., 2020 ⁴⁶	Good (78.2)	Positive (89.2)	Satisfactory (53.1)		
Honarvar et al., 2020 ⁴⁷	Good (63)	Positive (54)	Satisfactory (78)		
Hossain et al., 2020 ⁴⁸	Good (86)	Positive (NR)	Satisfactory (NR)		
Jadoo et al., 2020 ⁴⁹	Good (77.8)	Positive (70.1)	Satisfactory (85.5)		
Kakemam et al., 2020 ⁵⁰	Good (87.5)	Positive (67.6)	Satisfactory (75.2)		
Kasemy et al., 2020 ⁵¹	Good (64.1)	Positive (75.9)	Satisfactory (50.1)		
Lau et al., 2020 ⁵²	Good (85.3)	Positive (67)	Satisfactory (82.2)		
Mousa et al., 2020 ⁵³	Good (84.7)	Positive (80.2)	Satisfactory (72.2)		
Ngwewondo et al., 2020 ⁵⁴	Good (84.1)	Positive (69)	Satisfactory (60.8)		
Nicholas et al., 2020 ⁵⁵	Good (53.7)	Positive (73.5)	Satisfactory (60.9)		
Pascawati et al., 2020 ⁵⁶	Good (97.4)	Positive (68.3)	Satisfactory (82.5)		
Paul et al., 2020 ⁵⁷	Poor (67)	Positive (52.4)	Unsatisfactory (44.8		
Roy et al., 2020 ⁶¹	Good (NR)	Positive (86.7)	NR		
Rahman et al., 2020 ⁵⁸	Good (57.6)	Positive (80.5)	Satisfactory (76.1)		
Rajeh, 2020 ⁵⁹	Good (99)	Positive (99.6)	Satisfactory (73.3)		
Reuben et al., 2020 ⁶⁰	Good (99.5)	Positive (79.5)	Satisfactory (81.1)		
Sari et al., 2020 ⁶²	Good (98)	Positive (96)	Satisfactory (NA)		
Sayedahmed et al., 2020 ⁶³	Good (68.3)	Positive (89.9)	Unsatisfactory (48.5		
Sengeh et al., 2020 ⁶⁴	Good (51.5)	Positive (83)	Unsatisfactory (41.1		
Susilkumar et al., 2020 ⁶⁵	Good (81)	Positive (91.1)	Satisfactory (87.7)		
Tariq et al., 2020	Poor (49.2)	Positive (NR)	Satisfactory (NR)		
Tandon et al., 2020	Good (99)	Positive (97)	NR		
Van Nhu et al., 2020	Good (92.2)	` ,			
Van Milu et al., 2020 Xu et al., 2020 ⁶⁹	` ,	Positive (68.6)	Satisfactory (75.8)		
	Good (93.7)	Positive (99.2)	NR		
Yang et al., 2020 ⁷⁰	Good (85.2)	Positive (92.9)	Satisfactory (84.4)		
Yousaf et al., 2020 ⁷¹	Good (88.9)	Positive (73.3)	Satisfactory (93)		
Yue et al., 2020 ⁷²	Good (57)	Positive (93.3)	Satisfactory (68)		
Zhong et al., 2020 ⁷³	Good (90)	Positive (94.1)	Satisfactory (97.2)		

^{*}NA: not report.

knowledge about symptoms such as high fever and dry cough, breathing difficulty and a small number had sufficient knowledge about other symptoms such as chills, headache, of taste muscle pain, sore throat, and loss smell.^{28,33,34,41,49,50,57,63} More than 90% of the participants considered air droplets as a way to spread. This good level of knowledge can be due to widespread information through various means such as public media (television and radio), social media, and government announcements. In addition, preparing several guidelines and reports by WHO, CDC, and local government in times of outbreak and easy access to them have increased the level of information and knowledge of individuals regarding COVID-19.^{28,29,37,45,50,53,60,69} On the other hand, factors such as low literacy level, older age, and the presence of the rural population in the samples were among the factors that have reduced the level of knowledge in the studies, 31,35,64

In this review, participants showed a positive attitude regarding COVID-19. Almost all participants believed in the importance of handwashing, disinfecting surfaces, using masks to prevent the spread of infection, resting at home in the event of symptoms, and maintaining social distance and limited contact. Of course, in some cases, there was a negative belief that it could be due to differences in instructions and guidelines by different institutions, such as what was about wearing a face mask at the beginning of the pandemic, and then it was recommended that the whole population should use a mask. ^{23,34,38,41,80,81} Such cases show the importance of integrated guidelines and the focus of decision-making in times of crisis. ^{39,82–85} Although having a responsible organization can help make better and faster

^a Knowledge: (good \geq 50), (poor <50).

^b Attitude: (positive \geq 50), (negative <50).

^c Practice: (satisfactory ≥50), (unsatisfactory <50).

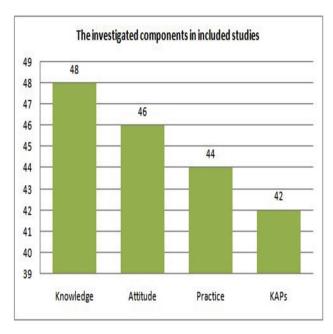


Fig. 4. The number of investigated components in the included studies.

decisions, in such cases, political pressure is exerted by governments that such organizations should put the health of the people at the top and not refuse to make the right decisions due to political pressures. $^{11,31,86-88}$

In general, the level of practice of the participants in the studies was satisfactory. However, despite the good knowledge and positive attitude of the participants, the level of practice was still sometimes lower than expected. Numerous reasons for unsatisfactory practices have been cited in studies. Lack of availability (for example, masks and disinfectants), imposing financial costs on participants, ambiguity in instructions, not getting used to new conditions such as staying home and wearing a mask, exhaustion from existing conditions, and anxiety and stress of disease were among the causes mentioned in the studies. 41,56,73,89-91 In this regard, some countries have imposed strict laws and penalties on people who do not follow the guidelines to improve their performance, but in many countries under study, such laws do not exist and have not been applied. 38,50,61,92,93 Another factor that affects the performance of individuals was the presence of decision-makers in public and social media. Seeing a person without a mask at the height of a pandemic hurt a person's good practices.

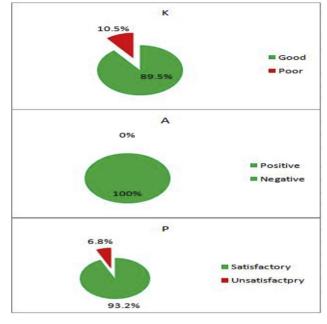


Fig. 5. The percentage of studies based on the knowledge (K), attitudes (A), and practices (P).

Given the diversity of settings and questionnaires, the authors of this article recommend that there be a need to design an integrated online system to assess the knowledge, attitudes, and practices of the population about health-related crises. Designing such an integrated system can help better compare countries because integrated items are used for comparison. On the other hand, designing such a system and disseminating its results can accelerate integrated decision-making and improve crisis management. On the other hand, the existence of such an integrated system can lead to an increase in solidarity, which was emphasized by the World Health Organization during the corona pandemic. 94,95

Conclusion

This systematic review showed that the KAP components in the participants are at an acceptable level. In general, knowledge was at a good level, the attitude was positive and practice was at a satisfactory level. Providing accurate and up-to-date information in times of crisis and disseminating them through responsible institutions and the mass media and holding online training

Table 3Meta-analysis of the pooled overall score of KAP components.

Component	Location	Number of studies	Score (%)	95% CI	Z-value	P-value
Knowledge	Africa	11	74.1	63.5, 82.5	4.13	0.001
	America	3	74.0	52.6, 88.0	2.17	0.001
	Asia	33	83.8	79.5, 87.4	11.1	0.001
	Overall	47	78.9	96.1, 86.2	5.02	0.001
Attitude	Africa	10	78.7	68.7, 86.1	4.93	0.001
	America	2	63.2	35.1, 84.6	0.91	0.359
	Asia	31	85.0	80.8, 88.4	11.4	0.001
	Overall	43	79.8	96.1, 87.5	4.70	0.001
Practice	Africa	10	59.6	48.5, 69.9	1.69	0.090
	America	3	78.5	61.5, 89.3	3.06	0.002
	Asia	26	81.5	76.9, 85.4	10.3	0.001
	Overall	39	74.1	56.0, 86.5	2.55	0.011

CI, confidence interval; KAP, knowledge, attitudes, and practices.

courses can help increase people's knowledge, attitudes, and practices.

Author statements

Acknowledgements

The authors thank the PROSPERO institute for accelerating the review process in the time of Coronavirus. They also thank Birjand University of Medical Sciences for approving our proposal and giving it a code of ethics (IR.BUMS.REC.1399.099).

Ethical approval

None sought.

Funding

Not applicable.

Competing interest

The authors have declared that no competing interests exist.

Author contributions

MA-Z contributed to conception and design. MM, SS, and SH contributed to screen the records, data extraction, and quality appraisal. MA-Z and HA contributed to data analysis. MA-Z contributed to draft manuscript. SH and HA contributed to critical review. All authors approved the final version of the manuscript for publication.

Data availability statement

All relevant data are with the article and the attached supplementary information.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.puhe.2021.03.005.

References

- Cao Z, Li T, Liang L, Wang H, Wei F, Meng S, et al. Clinical characteristics of coronavirus disease 2019 patients in Beijing, China. PloS One 2020;15: e0234764
- Arab-Zozani M, Hassanipour S. Features and limitations of LitCovid hub for quick access to literature about COVID-19. Balkan Med J 2020;37:231.
- 3. https://www.worldometers.info/coronavirus/#countries.
- Arab-Zozani M, Hassanipour S, Ghoddoosi-Nejad D. Favipiravir for treating patients with novel coronavirus (COVID-19): protocol for a systematic review and meta-analysis of randomised clinical trials. BMJ Open 2020;10: e039730
- Struyf T, Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Leeflang MM, et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease. Cochrane Database Syst Rev 2020;7.
- Gaythorpe K, Imai N, Cuomo-Dannenburg G, Baguelin M, Bhatia S, Boonyasiri A, et al. Report 8: symptom progression of COVID-19. 2020.
- Organization WH. Novel Coronavirus (2019-nCoV) situation report-7. 2020. URL https://www who int/docs/default-source/coronaviruse/situation-reports/ 20200127-sitrep-7-2019-ncov pdf. 2020.
- 8. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. *Lancet* 2020;**395**:470–3.
- 9. Feng S, Shen C, Xia N, Song W, Fan M, Cowling BJ. Rational use of face masks in the COVID-19 pandemic. *Lancet Respir Med* 2020;**8**:434–6.

- Siedner MJ, Harling G, Reynolds Z, Gilbert RF, Venkataramani A, Tsai AC. Social distancing to slow the US COVID-19 epidemic: an interrupted time-series analysis. MedRxiv; 2020.
- Arab-Zozani M, Ghoddoosi-Nejad D. Covid-19 in Iran: the good, the bad and the ugly strategies for preparedness—A report from the field. *Disaster Med Public Health Prep* 2020:1—6.
- Dewey C, Hingle S, Goelz E, Linzer M. Supporting clinicians during the COVID-19 pandemic. Am Coll Physicians 2020:752–3.
- 13. Zhan M, Qin Y, Xue X, Zhu S. Death from Covid-19 of 23 health care workers in China. N Engl J Med 2020;382:2267—8.
- Ing E, Xu Q, Salimi A, Torun N. Physician deaths from corona virus (COVID-19) disease. Occup Med 2020;70:370–4.
- Yoosefi Lebni J, Abbas J, Moradi F, Salahshoor MR, Chaboksavar F, Irandoost SF, et al. How the COVID-19 pandemic effected economic, social, political, and cultural factors: a lesson from Iran. Int J Soc Psychiatr 2020;1:1–3. 0020764020939984.
- 16. Yezli S, Khan A. COVID-19 social distancing in the Kingdom of Saudi Arabia: bold measures in the face of political, economic, social and religious challenges. *Trav Med Infect Dis* 2020:101692.
 17. Wu ZMcGoogan J. Characteristics of and important lessons from the corona-
- Wu ZMcGoogan J. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. J Am Med Assoc 2020;323:1239–42.
- McEachan R, Taylor N, Harrison R, Lawton R, Gardner P, Conner M. Metaanalysis of the reasoned action approach (RAA) to understanding health behaviors. Ann Behav Med 2016;50:592-612. a publication of the Society of Behavioral Medicine.
- Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
- **20.** Booth A, Clarke M, Dooley G, Ghersi D, Moher D, Petticrew M, et al. The nuts and bolts of PROSPERO: an international prospective register of systematic reviews. *Syst Rev* 2012;**1**:1–9.
- 21. Porritt K, Gomersall J, Lockwood C. JBI's systematic reviews: study selection and critical appraisal. *AJN Am J Nur* 2014;114:47–52.
- **22.** Arab-Zozani M, Pezeshki MZ, Khodayari-Zarnaq R, Janati A. Inappropriate rate of admission and hospitalization in the Iranian hospitals: a systematic review and meta-analysis. *Value Health Reg Issues* 2020;**21**:105–12.
- 23. Bdair IA, Alshloul MN, Maribbay GL. Public awareness toward coronavirus disease-2019. Asia Pac J Publ Health 2020;35:354–6.
- 24. Hassanipour S, Faradonbeh SB, Momeni K, Heidarifard Z, Khosousi M-J, Khosousi L, et al. A systematic review and meta-analysis of pregnancy and COVID-19: signs and symptoms, laboratory tests, and perinatal outcomes. Int J Reprod Biomed 2020;18:1005.
- 25. Arab-Zozani M, Mostafazadeh N, Arab-Zozani Z, Ghoddoosi-Nejad D, Hassanipour S, Soares JJ. The prevalence of elder abuse and neglect in Iran: a systematic review and meta-analysis. J Elder Abuse Negl 2018;30:408–23.
- 26. Ferdousi R, Arab-Zozani M, Tahamtan I, Rezaei-Hachesu P, Dehghani M. Attitudes of nurses towards clinical information systems: a systematic review and meta-analysis. *Int Nurs Rev* 2020;**13**:1446–52.
- Adesegun OA, Binuyo T, Adeyemi O, Ehioghae O, Rabor DF, Amusan O, et al. The COVID-19 crisis in Sub-Saharan Africa: knowledge, attitudes, and practices of the Nigerian public. Am J Trop Med Hyg 2020;103:1997–2004.
- 28. Alahdal H, Basingab F, Alotaibi R. An analytical study on the awareness, attitude and practice during the COVID-19 pandemic in Riyadh, Saudi Arabia. *J Infect Public Health* 2020;**13**:1446-52.
- Al-Hanawi MK, Angawi K, Alshareef N, Qattan AMN, Helmy HZ, Abudawood Y, et al. Knowledge, attitude and practice toward COVID-19 among the public in the Kingdom of Saudi Arabia: a cross-sectional study. Front Public Health 2020;8.
- Alhazmi A, Ali MHM, Mohieldin A, Aziz F, Osman OB, Ahmed WA. Knowledge, attitudes and practices among people in Saudi Arabia regarding COVID-19: a cross-sectional study. J Public Health Res 2020;9.
- **31.** Alobuia WM, Dalva-Baird NP, Forrester JD, Bendavid E, Bhattacharya J, Kebebew E. Racial disparities in knowledge, attitudes and practices related to COVID-19 in the USA. *J Public Health (Oxf).* 2020;**42**(3):470–8.
- Amalakanti S, Raman Arepalli KV, Koppolu RK. Gender and occupation predict coronavirus disease 2019 knowledge, attitude and practices of a cohort of a South Indian state population. *Indian J Med Microbiol* 2020;38: 144–56.
- 33. Ashiq K, Ashiq S, Bajwa MA, Tanveer S, Qayyum M. Knowledge, attitude and practices among the inhabitants of Lahore, Pakistan towards the COVID-19 pandemic: an immediate online based cross-sectional survey while people are under the lockdown. Bangladesh J Med Sci 2020;19:S69—76.
- **34.** Azlan AA, Hamzah MR, Sern TJ, Ayub SH, Mohamad E. Public knowledge, attitudes and practices towards COVID-19: a cross-sectional study in Malaysia. *PloS One* 2020;**15**:e0233668.
- 35. Baig M, Jameel T, Alzahrani SH, Mirza AA, Gazzaz ZJ, Ahmad T, et al. Predictors of misconceptions, knowledge, attitudes, and practices of COVID-19 pandemic among a sample of Saudi population. *PloS One* 2020;**15**:e0243526.
- Bates BR, Moncayo AL, Costales JA, Herrera-Cespedes CA, Grijalva MJ. Knowledge, attitudes, and practices towards COVID-19 among Ecuadorians during

- the outbreak: an online cross-sectional survey. *J Community Health* 2020;**45**: 1158–67
- Clements JM. Knowledge and behaviors toward COVID-19 among US residents during the early days of the pandemic; cross-sectional online questionnaire. IMIR Public Health Surveill 2020;6:e19161.
- 38. Domiati S, Itani M, Itani G. Knowledge, attitude, and practice of the Lebanese community toward COVID-19. Front Med (Lausanne) 2020;7.
- Elayeh E, Aleidi SM, Ya'acoub R, Haddadin RN. Before and after case reporting: a comparison of the knowledge, attitude and practices of the Jordanian population towards COVID-19. Plos One 2020;15:e0240780.
- Fallahi A, Mahdavifar N, Ghorbani A, Mehrdadian P, Mehri A, Joveini H, et al. Public knowledge, attitude and practice regarding home quarantine to prevent COVID-19 in Sabzevar city, Iran. J Mil Med 2020;22:580–8.
- Ferdous MZ, Islam MS, Sikder MT, Mosaddek ASM, Zegarra-Valdivia JA, Gozal D. Knowledge, attitude, and practice regarding COVID-19 outbreak in Bangladesh: an online-based cross-sectional study. *PloS One* 2020:15:e0239254.
- Gao H, Hu R, Yin L, Yuan X, Tang H, Luo L, et al. Knowledge, attitudes and practices of the Chinese public with respect to coronavirus disease (COVID-19): an online cross-sectional survey. *BMC Publ Health* 2020;20:1–8.
 Ghazi HF, Taher TMJ, Abdalqader MA, Raheema RH, Baobaid MF, Hasan TN.
- Ghazi HF, Taher TMJ, Abdalqader MA, Raheema RH, Baobaid MF, Hasan TN. Knowledge, attitude, and practice regarding coronavirus disease-19: population-based study in Iraq. Open Access Maced J Med Sci 2020;8:137–41.
- 44. Haftom M, Petrucka P, Gemechu K, Mamo H, Tsegay T, Amare E, et al. Knowledge, attitudes, and practices towards COVID-19 pandemic among quarantined adults in Tigrai region, Ethiopia. *Infect Drug Resist* 2020;13: 3727.
- Hager E, Odetokun IA, Bolarinwa O, Zainab A, Okechukwu O, Al-Mustapha Al. Knowledge, attitude, and perceptions towards the 2019 coronavirus pandemic: a bi-national survey in Africa. *PloS One* 2020;15:e0236918.
- Hezima A, Aljafari A, Aljafari A, Mohammad A, Adel I. Knowledge, attitudes, and practices of Sudanese residents towards COVID-19. East Mediterr Health J 2020:26:646–51.
- Honarvar B, Lankarani KB, Kharmandar A, Shaygani F, Zahedroozgar M, Rahmanian Haghighi MR, et al. Knowledge, attitudes, risk perceptions, and practices of adults toward COVID-19: a population and field-based study from Iran. Int J Publ Health 2020:65:731–9.
- **48.** Hossain MA, Jahid MIK, Hossain KMA, Walton LM, Uddin Z, Haque MO, et al. Knowledge, attitudes, and fear of COVID-19 during the rapid rise period in Bangladesh. *PloS One* 2020;**15**:e0239646.
- Jadoo SAA, Alhusseiny AH, Yaseen SM, Al-Samarrai MAM, Al-Delaimy AK, Abed MW, et al. Knowledge, attitude, and practice toward COVID-19 among Iraqi people: a web-based cross-sectional study. J Ideas Health 2020;3:258–65.
- 50. Kakemam E, Ghoddoosi-Nejad D, Chegini Z, Salehiniya H, Hassanipour S, Ameri H, et al. Knowledge, attitudes, and practices among the general population around COVID-19 during the peak of the outbreak in Iran: a national cross-sectional survey. Front Public Health 2020;8:868.
- Kasemy ZA, Bahbah WA, Zewain SK, Haggag MG, Alkalash SH, Zahran E, et al. Knowledge, attitude and practice toward COVID-19 among Egyptians. J Epidemiol Glob Health 2020;10:378.
- **52.** Lau LL, Hung N, Go DJ, Ferma J, Choi M, Dodd W, et al. Knowledge, attitudes and practices of COVID-19 among income-poor households in the Philippines: a cross-sectional study. *J Glob Health* 2020;**10**:011007.
- 53. Mousa KNAA, Saad MMY, Abdelghafor MTB. Knowledge, attitudes, and practices surrounding COVID-19 among Sudan citizens during the pandemic: an online cross-sectional study. *Sudan J Med Sci* 2020;**15**:32–45.
- 54. Ngwewondo A, Nkengazong L, Ambe LA, Ebogo JT, Mba FM, Goni HO, et al. Knowledge, attitudes, practices of/towards COVID 19 preventive measures and symptoms: a cross-sectional study during the exponential rise of the outbreak in Cameroon. PLoS Neglected Trop Dis 2020;14:e0008700.
- 55. Nicholas T, Mandaah FV, Esemu SN, Vanessa ABT, Gilchrist KTD, Vanessa LF, et al. COVID-19 knowledge, attitudes and practices in a conflict affected area of the South West Region of Cameroon. Pan Afr Med J 2020;35:1–8.
- Pascawati NA, Satoto TBT. Public knowledge, attitudes and practices towards COVID-19. Int J Publ Health Sci 2020;9:292–302.
- Paul A, Sikdar D, Hossain MM, Amin MR, Deeba F, Mahanta J, et al. Knowledge, attitudes, and practices toward the novel coronavirus among Bangladeshis: implications for mitigation measures. *PloS One* 2020;15:e0238492.
- Rahman SMM, Akter A, Mostari KF, Ferdousi S, Ummon IJ, Naafi SM, et al. Assessment of knowledge, attitudes and practices towards prevention of coronavirus disease (COVID-19) among Bangladeshi population. *Bangladesh Med Res Counc Bull* 2020;46:73–82.
- Rajeh M. COVID-19 and infection control in dental clinics; assessment of public knowledge, attitudes and practices in several regions of Saudi Arabia. *Open Dent J* 2020;14:489–97.
- **60.** Reuben RC, Danladi MMA, Saleh DA, Ejembi PE. Knowledge, attitudes and practices towards COVID-19: an epidemiological survey in North-Central Nigeria. *J Community Health* 2020:1–14.
- Roy D, Tripathy S, Kar SK, Sharma N, Verma SK, Kaushal V. Study of knowledge, attitude, anxiety & perceived mental healthcare need in Indian population during COVID-19 pandemic. Asian J Psychiatr 2020;51:102083.

- **62.** Sari C, Simsek EC, Ozdogan O. The outcomes of the postulated interaction between SARS-CoV-2 and the renin-angiotensin system on the clinician's attitudes toward hypertension treatment. *J Hum Hypertens* 2020:1–9.
- **63.** Sayedahmed AMS, Abdalla AAA, Khalid MHM. Knowledge, attitude and practice regarding COVID-19 among Sudanese population during the early days of the pandemic: online cross-sectional survey. *Sci Afr* 2020;**10**:e00652.
- **64.** Sengeh P, Jalloh MB, Webber N, Ngobeh I, Samba T, Thomas H, et al. Community knowledge, perceptions and practices around COVID-19 in Sierra Leone: a nationwide. cross-sectional survey. *BMI Open* 2020:**10**:e040328.
- Susilkumar V, Vengadassalapathy S. Knowledge, attitudes, practices and psychological response towards COVID-19 pandemic among general public in India. Int | Res Pharm Sci 2020;11:892–900.
- Tandon T, Dubey AK, Dubey S, Manocha S, Arora E, Hasan MN. Knowledge, attitude, and perception of Indian population toward coronavirus disease (COVID-19). J Fam Med Prim Care 2020;9:4265.
- **67.** Tariq S, Tariq S, Baig M, Saeed M. Knowledge, awareness and practices regarding novel coronavirus among a sample of Pakistani population, a cross-sectional study. *Disaster Med Public Health Prep* 2020:1–20.
- Van Nhu H, Tuyet-Hanh TT, Van NTA, Linh TNQ, Tien TQ. Knowledge, attitudes, and practices of the Vietnamese as key factors in controlling COVID-19.
 J Community Health 2020;45:1263—9.
- Xue Q, Xie X, Liu Q, Zhou Y, Zhu K, Wu H, et al. Knowledge, attitudes, and practices towards COVID-19 among primary school students in Hubei Province, China. Child Youth Serv. Rev. 2020; 120:105735.
- **70.** Yang K, Liu H, Ma L, Wang S, Tian Y, Zhang F, et al. Knowledge, attitude and practice of residents in the prevention and control of COVID-19: an online questionnaire survey. *J Adv Nurs* 2020;**77**:1839–55.
- Yousaf MA, Noreen M, Saleem T, Yousaf I. A cross-sectional survey of knowledge, attitude, and practices (KAP) toward pandemic COVID-19 among the general population of Jammu and Kashmir, India. Soc Work Publ Health 2020;35:569–78.
- Yue S, Zhang J, Cao M, Chen B. Knowledge, attitudes and practices of COVID-19 among urban and rural residents in China: a cross-sectional study. J Community Health 2020:46:286–91.
- Zhong B-L, Luo W, Li H-M, Zhang Q-Q, Liu X-G, Li W-T, et al. Knowledge, attitudes, and practices towards COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak: a quick online cross-sectional survey. *Int J Biol Sci* 2020;16:1745.
- **74.** Tull MT, Edmonds KA, Scamaldo K, Richmond JR, Rose JP, Gratz KL. Psychological outcomes associated with stay-at-home orders and the perceived impact of COVID-19 on daily life. *Psychiatr Res* 2020:113098.
- Haleem A, Javaid M, Vaishya R. Effects of COVID 19 pandemic in daily life. Curr Med Res Pract 2020;10:78–9.
- Lee M, Kang BA, You M. Knowledge, attitudes, and practices (KAP) toward COVID-19: a cross-sectional study in South Korea. BMC Publ Health 2021;21: 1–10
- Namikawa K, Kikuchi H, Kato S, Takizawa Y, Konta A, Iida T, et al. Knowledge, attitudes, and practices of Japanese travelers towards malaria prevention during overseas travel. *Trav Med Infect Dis* 2008;6:137–41.
- 78. Chan EYY, Huang Z, Lo ESK, Hung KKC, Wong ELY, Wong SYS. Sociodemographic predictors of health risk perception, attitude and behavior practices associated with health-emergency disaster risk management for biological hazards: the case of COVID-19 pandemic in Hong Kong, SAR China. *Int J Environ Res Publ Health* 2020;17:3869.
- **79.** Arab-Zozani M, Ghoddoosi-Nejad D. COVID-19 in Iran: the good, the bad, and the ugly strategies for preparedness—A report from the field. *Disaster Med Public Health Prep* 2020:1—3.
- Olum R, Chekwech G, Wekha G, D.A. N, Bongomin F. Coronavirus disease-2019: knowledge, attitude, and practices of health care workers at Makerere University Teaching Hospitals, Uganda. Front Public Health 2020;8.
- 81. Riccò M, Ferraro P, Gualerzi G, Ranzieri S, Bragazzi NL, Balzarini F, et al. Pointof-Care diagnostic of SARS-CoV-2: knowledge, attitudes, and perceptions (KAP) of medical workforce in Italy. *Acta Biomed: Atenei Parmensis.* 2020;**91**:57–67.
- **82.** Hong KH, Lee SW, Kim TS, Huh HJ, Lee J, Kim SY, et al. Guidelines for laboratory diagnosis of coronavirus disease 2019 (COVID-19) in Korea. *Ann Lab Med* 2020;**40**:351–60.
- **83.** Jin Y-H, Cai L, Cheng Z-S, Cheng H, Deng T, Fan Y-P, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). *Mil Med Res* 2020;**7**:4.
- **84.** Almofada SK, Alherbisch RJ, Almuhraj NA, Almeshary BN, Alrabiah B, Al Saffan A, et al. Knowledge, attitudes, and practices toward COVID-19 in a Saudi Arabian population: a cross-sectional study. *Cureus* 2020;**12**:e8905.
- Usman IM, Ssempijja F, Ssebuufu R, Lemuel AM, Archibong VB, Ayikobua ET, et al. Community drivers affecting adherence to WHO guidelines against COVID-19 amongst rural Ugandan market vendors. Front Public Health 2020;8: 340.
- **86.** Flinders M. Democracy and the politics of coronavirus: trust, blame and understanding. *Parliam Aff* 2020. gsaa013.
- Davies S. The politics of staying behind the frontline of coronavirus. Wellcome Open Res 2020;5:131.

- **88.** Lewin KM. Contingent reflections on coronavirus and priorities for educational planning and development. *Prospects* 2020;**49**:17–24.
- 89. Mitchell BG, Russo PL, Kiernan M, Curryer C. Nurses' and midwives' cleaning knowledge, attitudes and practices: an Australian study. *Infect Dis Health* 2020;**25**:55–62.
- Paul E, Alzaydani Asiri IA, Al-Hakami A, Chandramoorthy HC, Alshehri S, Beynon CM, et al. Healthcare workers' perspectives on healthcare-associated infections and infection control practices: a video-reflexive ethnography study in the Asir region of Saudi Arabia. Antimicrob Resist Infect Contr 2020;9: 1–2.
- 91. Xu H, Gan Y, Zheng D, Wu B, Zhu X, Xu C, et al. Relationship between COVID-19 infection and risk perception, knowledge, attitude, and four
- nonpharmaceutical interventions during the late period of the COVID-19 epidemic in China: online cross-sectional survey of 8158 adults. *J Med Internet Res* 2020;**22**:e21372.
- 92. Parmet WE, Sinha MS. Covid-19—the law and limits of quarantine. *N Engl J Med* 2020;**382**:e28.
- Griffith R. Using public health law to contain the spread of COVID-19. Br J Nurs 2020;29:326-7.
- 94. Arab-Zozani M, Hassanipour S. Sharing solidarity experiences to overcome COVID-19. *Ann Glob Health* 2020:86.
- Arora G, Kroumpouzos G, Kassir M, Jafferany M, Lotti T, Sadoughifar R, et al. Solidarity and transparency against the COVID-19 pandemic. *Dermatol Ther* 2020. dth13359.