The Lancet

COVID-19 Clinical Characteristics, Complications and comorbidity: An updated Systemic Review and Meta-analysis --Manuscript Draft--

Manuscript Number:	THELANCET-D-20-13334				
Article Type:	Article				
Keywords:	COVID-19; Corona virus; epidemiology; pandemic				
Corresponding Author:	Mohammad Hossein YektaKooshali Guilan University of Medical Sciences IRAN, ISLAMIC REPUBLIC OF				
First Author:	Alireza Jafari				
Order of Authors:	Alireza Jafari				
	Siavash Falahatkar				
	Mohammad Hossein YektaKooshali				
Manuscript Region of Origin:	IRAN, ISLAMIC REPUBLIC OF				
Abstract:	Background				
	COVID-19, a novel pneumonia associated with the 2019 coronavirus infected pneumonia suddenly broke out in the world. The aim of this study is to summaries and analysis the clinical characteristics of COVID-19.				
	Methods				
	Literatures have been systematically searched on Scopus, PubMed, Embase, Web of Science, and The Cochrane Library and also special databases prepared for COVID-19 such as LitCovid Hub, WHO, Elsevier, Medrxiv and CDC from inception up to May 1, 2020. Data searching, extracting and quality appraising were done by two researchers, independently. At last, Random-effects size based on Cochrane test and I 2 were used. The Newcastle-Ottawa Scale was used to assess quality, and publication bias was analyzed by Egger and Begg's test. The review protocol has been registered in PROSPERO with ID: CRD42020173639 and with ethical code IR.GUMS.REC.1398.542.				
	Results				
	Out of 2464 studies, 75(3.04%) were included. A total of 111490 patients with a mean age of 49.43 years [Confidence Interval(CI)95%: 47.44-51.42] were evaluated. Most of patients was male (52.65%). The body mass index (BMI) in the most was in normal rate (23.26). 33.5% of patients were health care workers. 62.71% of patients had direct exposure history. The most common clinical symptoms were fever, cough, myalgia and dyspnea (82.72%, 57.69%; 25.20% and 20.87%, respectively). The most common comorbidities were acute respiratory distress syndrome, chronic medical illness, hypertension, and diabetes (30.4%, 22.25%, 17.47%, and 11.19% respectively). Among the laboratory abnormalities, the most patients had high levels of leucocytes (24.76%), lymphocyte (39.56%), increasing of neutrophil (14.48%), platelet (39.81%), D-dimer (30.89%), AST (22.09%), Creatinine (48.21%), troponin I (4.12%), urea nitrogen (22.94%), Creatine Kinase (48.21%), and C-reactive proteins (56.8%). About 37.35% of patients had a decreasing in the hemoglobin. CT-Scan funding shows that three fourths of patients had bilateral pneumonia involvement (78.25%), and 58.37% had GGO. Crazy-paving, vascular enlargement, air bronchus gram sign, and air trapping were seen in 22.55%, 61.79%, and 11.76%, respectively. The most common regions of the lung involvement were lower lobe 91.70%. Also, 66.34% of patients had peripheral involvement, and had punctate ground glass opacities (64.73%).				

	COVID-19 is still a leading epidemic infection with comorbidities, clinical, laboratory and radiological findings, and its specific demographic characteristics. We found the rate of mortality of patients with COVID-19 is also decreasing, gradually. It could be related to the early recognition, early intervention, and early centered-quarantine of people in the world.
--	--

1	COVID-19 Clinical Characteristics, Complications and comorbidity: An								
2	updated Systemic Review and Meta-analysis								
3	Running title: Clinical Characteristics of 2019 coronavirus								
4	Alireza Jafari ^{1,2, #} , Siavash Falahatkar ¹ , Mohammad Hossein YektaKooshali ^{1, *, #}								
5	¹ Urology Research Center, Department of Internal Medicine, Razi Hospital, School of Medicine, Guilan								
6	University of Medical Sciences, Rasht, Iran								
7	² Inflammatory Lung Diseases Research Center, Department of Internal Medicine, Razi Hospital, School								
8	of Medicine, Guilan University of Medical Sciences, Rasht, Iran								
9	# These author collaborated equally								
10	* Corresponding Author:								
11	Mohammad Hossein YektaKooshali								
12	Urology Research Center, Department of Internal Medicine, Razi Hospital, School of Medicine,								
13	Guilan University of Medical Sciences, Rasht, Iran								
14	Address: No. 11, Sardar Jangal Road, Razi Hospital, Rasht, Iran								
15	Tel: +98 901-478-2114; Fax: +98 13 33542460								
16	E-mail: <u>yektakooshali.mh1995@yahoo.co.uk</u>								

17 ABSTRACT

Background: COVID-19, a novel pneumonia associated with the 2019 coronavirus infected
pneumonia suddenly broke out in the world. The aim of this study is to summaries and analysis
the clinical characteristics of COVID-19.

Methods: Literatures have been systematically searched on Scopus, PubMed, Embase, Web of 21 22 Science, and The Cochrane Library and also special databases prepared for COVID-19 such as LitCovid Hub, WHO, Elsevier, Medrxiv and CDC from inception up to May 1, 2020. Data 23 searching, extracting and quality appraising were done by two researchers, independently. At last, 24 Random-effects size based on Cochrane test and I^2 were used. The Newcastle-Ottawa Scale was 25 used to assess quality, and publication bias was analyzed by Egger and Begg's test. The review 26 protocol has been registered in PROSPERO with ID: CRD42020173639 and with ethical code 27 IR.GUMS.REC.1398.542. 28

Results: Out of 2464 studies, 75(3.04%) were included. A total of 111490 patients with a mean 29 age of 49.43 years [Confidence Interval(CI)95%: 47.44-51.42] were evaluated. Most of patients 30 was male (52.65%). The body mass index (BMI) in the most was in normal rate (23.26). 33.5% of 31 patients were health care workers. 62.71% of patients had direct exposure history. The most 32 33 common clinical symptoms were fever, cough, myalgia and dyspnea (82.72%, 57.69%; 25.20%) and 20.87%, respectively). The most common comorbidities were acute respiratory distress 34 syndrome, chronic medical illness, hypertension, and diabetes (30.4%, 22.25%, 17.47%, and 35 36 11.19% respectively). Among the laboratory abnormalities, the most patients had high levels of leucocytes (24.76%), lymphocyte (39.56%), increasing of neutrophil (14.48%), platelet (39.81%), 37 D-dimer (30.89%), AST (22.09%), Creatinine (48.21%), troponin I (4.12%), urea nitrogen 38 39 (22.94%), Creatine Kinase (48.21%), and C-reactive proteins (56.8%). About 37.35% of patients

40 had a decreasing in the hemoglobin. CT-Scan funding shows that three fourths of patients had bilateral pneumonia involvement (78.25%), and 58.37% had GGO. Crazy-paving, vascular 41 enlargement, air bronchus gram sign, and air trapping were seen in 22.55%, 61.79%, and 11.76%, 42 43 respectively. The most common regions of the lung involvement were lower lobe 91.70%. Also, 66.34% of patients had peripheral involvement, and had punctate ground glass opacities (64.73%). 44 Conclusion: COVID-19 is still a leading epidemic infection with comorbidities, clinical, 45 laboratory and radiological findings, and its specific demographic characteristics. We found the 46 rate of mortality of patients with COVID-19 is also decreasing, gradually. It could be related to 47 the early recognition, early intervention, and early centered-quarantine of people in the world. 48

50 **INTRODUCTION**

In late December 2019, a pneumonia case of unknown cause was reported in Wuhan, Hubei 51 Province, the People's Republic of China, which changed the lives of people all over the world.¹, 52 which the virus was recognized as SARS-CoV- 2^{2} . The researchers confirmed that the prevalence 53 of coronavirus disease 2019 (COVID-19) is a continuous prevalence of the SARS-CoV-2². On 26 54 February 2020, the WHO reported an increase in the new cases of Italy, Iran, and South Korea³, 55 and until - 2 March 2020- more than 89,000 cases were confirmed, of which more than 90% of 56 them were from China⁴. Recently, more than 2,900 people have died in China and more than 130 57 have died in other countries, also more than 45,000 people have recovered⁴. 58

Based on the researches, the COVID-19 spreads via respiratory droplets produced from the 59 airways during coughing or sneezing ^{5,6}, and the time between exposure and symptom ranges from 60 two to fourteen days ⁷. Fever, cough, diarrhea, and shortness of breath may be symptoms of the 61 COVID-19⁷. It is confirmed that serious complications may be pneumonia and acute respiratory 62 distress syndrome (ARDS). Until now, no vaccine or specific antiviral treatment was discovered, 63 and to manage symptoms of the COVID-19 physicians advised supportive therapy for fourteen 64 days ⁷. There is not data about the typical degree of immunity, re-infection of COVID-19, and 65 immunity of COVID-19⁸. The time range of progress of symptoms of COVID-19 and death has 66 been shown between 6 and 41 days ⁹. Most of the people who died were over the age of 60 and 67 most patients suffered from cardiovascular diseases and diabetes ^{10,11}. Unfortunately, as of 28 68 February 2020, more than a dozen deaths have been recorded in each of Iran, South Korea, and 69 Italy³. Transmission of the COVID-19 human-to-human via respiratory droplets [69], and is able 70 transmission if people touch a surface ¹². The COVID-19 virus could stay viable surface for up to 71 nine days at room temperature ⁶. It is confirmed that the disinfection of surfaces by 62–71% ethanol 72

could be useful for one minute ⁶. Temporally, there is no specific antiviral medication ¹³. To control
of severity of the disease, intravenous fluids, and breathing support especially oxygen therapy may
be useful ¹⁴. Researchers are investigating the Favipiravir, Ribavirin, Remdesivir, and
Galidesiviras as potential drugs against the COVID-19 virus ¹⁵⁻¹⁷.

Until May 1, 2020, about 2464 manuscripts have been reported regarding the epidemiology and 77 clinical features of pneumonia caused by the COVID-19 virus via researchers in the world. In this 78 79 study we reviewed main PubMed, Embase, Web of Science, Scopus, and The Cochrane Library, and also special databases prepared for COVID-19 such as LitCovid Hub, WHO, Elsevier, 80 Medrxiv and CDC data bases from inception up to May 1, 2020. We analyzed the prevalence of 81 various clinical symptoms have been proposed as the typical features for the COVID-19 virus, 82 furthermore, some features are controversial in different clinic environments. Therefore, update 83 evidence-based medical clinical characters are required urgently and Vital. In this study, we try to 84 did a systemic review and a meta-analysis of the clinical features and significance demographics 85 characters of patient with the COVID-19 virus pneumonia. 86

87

88

89 **2. Method**

90 **2.1. Study Protocol**

This review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews and meta-analyses. Data searching, extracting and quality appraising were done by two researchers (MH.YK & A.J), independently. Any encounters were solved by consensus between the team and a third researcher. The protocol for the review was registered with PROSPERO ((<u>https://www.crd.york.ac.uk/PROSPERO/</u>) Identifier(ID): <u>CRD42020173639</u>¹⁸. Also, the ethics committee approval of this study is

97 <u>IR.GUMS.REC.1398.542 (S1-2 File)</u>.

98 2.2. Search Strategy

An advanced relevant search was conducted in international databases, such as Scopus, PubMed, 99 100 Embase, Web of Science, and The Cochrane Library and also special databases prepared for COVID-19 such as as LitCovid Hub, WHO, Elsevier, Medrxiv and CDC from inception up to May 101 1, 2020 were searched for articles published. Articles on COVID-19, severe acute respiratory 102 syndrome coronavirus 2, novel coronavirus, SARS-CoV-2, nCoV disease, SARS2, COVID19, 103 Wuhan coronavirus, 2019-nCoV, coronavirus disease-19, coronavirus disease 2019, 2019 novel 104 105 201 coronavirus and Wuhan pneumonia were also manually retrieved. To maximize search sensitivity, no filters or limits on language were applied. To identify further studies, the reference 106 lists of included articles and review articles were hand-searched. 107 108 To search a combination of words, Boolean operators (AND & OR) were used. Also, searching

- 109 was done through medical subject heading (MeSH) terms. The authors independently analyzed
- 110 the manuscript contained in the title and abstract.

111 **2.3. Selection Criteria**

112 The duplicates records were removed using EndNote X7 (Thomson Reuters, New York, NY, USA). Two reviewers (MH.YK and A.J) independently screened the records by title and abstract. 113 A third reviewer were evaluated the full texts of potentially eligible records. Included studies were 114 patients who diagnosed with RT-PCR; the raw data for clinical, radiological, CT-scan, laboratory 115 findings, and the outcomes. Studies were excluded which had insufficient information about 116 patients' characteristics and outcomes. Case reports, reviews, repeat articles, letters, editorials, and 117 expert opinions; studies without usable data; and animal studies were also excluded. Only studies 118 are written in English and Chinese were selected. 119

120 **2.4. Quality assessment**

The Newcastle-Ottawa Scale was used to assess quality. Assessment scores of 0-3, 4-6, and 7-9 indicated poor, fair, and good studies, respectively. Disagreements were resolved by consensus. After excluding irrelevant studies in the screening and eligibility stages, the Newcastle-Ottawa Scale (NOS) ¹⁹ were used to assessing the quality of the final studies. The Checklist (S3 File) was used which consists of 8 sections, and divides the studies with a scale score of 0 to 8 from poor to high quality, respectively. The studies are divided into three levels of scoring: 1- Studies with a score of 5: poor quality; 2- studies with a score of 5–6: medium quality; 3- studies with a score of

128 7 to 8: high quality. Finally, medium to high quality articles were entered into the next stage (Fig129 1).

130 Fig 1. A flow diagram following the PRISMA (Depicted by MH-YK).

131 **2.5. Data extraction**

A data extraction form was designed by two reviewers (MH.YK and A.J) which were blind for the name of the author, institute and journal. In necessary cases, further information and raw data were requested by contacting the author (the first author or responsible or the authors' department). The reviewers extracted the data from all eligible studies and disagreements were resolved by discussion with a third researcher. The following data were extracted: first author name; year of publication; type of study, the country where the study was conducted; distribution of age and sex in the population, number of patients investigated, exposure history, comorbid conditions, symptoms at admission, clinical, radiological, CT-scan and laboratory findings, therapies, and discharge, recovery, and death outcomes (S4 File).

141

142 **2.6. Statistical analysis**

All data was considered as a binomial distribution probability, and the variance was calculated by a binomial distribution. The Cochran test (Q) and I² index were used to evaluate its heterogeneity 20,21 . The I² index less than 25% is low heterogeneity, between 75% -25% is the average heterogeneity and more than 75% are considered as heterogeneous^{22,23}. To examine publication bias, the Begg's test and Egger's test were carried out using a funnel plot. Data analysis was examined by the comprehensive meta-analysis (Ver. 2 Englewood, NJ 07631, USA), and the level of significance was considered as p<0.05.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3631253

150 **3. RESULTS**

151 **3.1. Study characteristics and methodological quality**

- 152 Out of 2464 studies, $75(3.04\%)^{24-92}$ were included with a total of 111490 patients (Fig 1). All
- 153 possible data were meta-analyzed (<u>S4 File</u>)(Table 1)(S1-144 Fig).
- 154 Fig 1. A flow diagram following the PRISMA (Depicted by MH-YK).

155 **3.2. General characteristics**

As shown in (S1-3 Fig), 62.71% of patients had direct exposure history with infected people in Wuhan or Hubei province [CI95%: 52.22-72.12]. The mean age of the patients was 49.43 years [CI95%: 47.44-51.42] (S4 Fig). Most of patients (52.65%) was male [CI95%: 51-54.3], and 47.28% was female [CI95%: 45.56-49] (S5 Fig). The body mass index (BMI) in most of patients was in normal rate (23.26) [CI95%: 22.28-24.23] (S6 Fig). About 33.5% of patients who suffer from 2019 novel infected coronavirus pneumonia were health care workers (HCWs) [CI95%: 12-64.9] (S7 Fig).

163 **3.3.** The prevalence of 2019 coronavirus based on the comorbidities

- 164 The most common comorbidities were acute respiratory distress syndrome (ARDS) 30.4% [CI
- 165 95%: 14.4-53.1]; chronic medical illness 22.25% [CI 95%: 10.62-40.79], hypertension 17.47%
- 166 [CI 95%: 13.55-22.24], and diabetes 11.19% [CI 95%: 9.19-13.55] respectively. The low common
- 167 comorbidities were chronic kidney diseases 3.05% [CI 95%: 1.59-6.78]; malignancies 3.2% [CI
- 168 95%: 2.33-4.38]; nervous system 3.5% [CI 95%: 1.26-9.31], and chronic obstructive pulmonary
- 169 disease (COPD) 3.56% [CI 95%: 2.38-5.32] (<u>S8-23 Fig</u>).
- 170 **3.4.** The prevalence of 2019 coronavirus based on the clinical symptoms

171 The more than three fourths of patients (82.72%) had fever [CI 95%: 77.87-86.68]; 57.69% had cough [CI 95%: 50.72-64.37]; 25.20% had myalgia/fatigue [CI 95%: 19.62-31.73], and 20.87% 172 had dyspnea [CI 95%:13.94-30.04]. The other clinical symptoms of patients were respectively, 173 174 chill 15.02% [CI 95%: 7.57-27.61]; sore throat 10.18% [CI 95%: 6.83-14.91]; rhinorrhea 5.9% [CI 95%: 3.47-9.17]; shortness of breath 13.61% [CI 95%: 5.98-28.06]; chest tightness 14.55% 175 [CI 95%: 9.73-21.19]; chest pain 3.19% [CI 95%: 1.02-9.54]; sputum production 19.93% [CI 95%: 176 13.38-28.63]; headache 9.08% [CI 95%: 7.08-11.58]; hemoptysis 3.55% [CI 95%: 2.00-6.22]; 177 nausea and vomiting 6.00% [CI 95%: 4.54-7.90], and diarrhea 7.49% [CI 95%: 5.87-9.51] (\$24-178

179 <u>42 Fig</u>).

180 **3.5.** The prevalence of 2019 coronavirus based on the timing

The incubation period of patients was estimated 5 days [CI95%: 5.008-6.073]. Duration of illness to dyspnea, first hospital to ICU, onset of symptom to hospital, and first symptom to death were reported 13 days [CI95%: 11.025-15.581], 5 days [CI95%: 3.438-6.158], 6 days [CI95%: 4.664-7.201], and 17 days [CI95%: 13.772-19.523] (<u>S43-9 Fig</u>).

185 **3.6. General Examination of COVID-19 plus Patients'**

The systolic to diastolic blood pressure was 87.887 (mm Hg) [CI95%: 82.570-93.205] \ 126.56 (mm Hg) [CI95%: 123.696-129.423], which was normal. The oxygen pressure of patients was between 49 (kpa) and 128 (kpa), (Mean 87.887 kpa) [CI95%: 82.570-93.205]. The oxygen saturation of patients was between 92 (kpa) and 97 (kpa), (Mean 95.141 kpa) [CI95%: 92.991-97.291]. The heart rate of patients was between 87 and 90 beats per minute (Mean 89.272 beats per minute) [CI95%: 87.870-90.674]. The respiratory rate of patients was between 10 and 18.7 breaths per minute (Mean 14.335 breaths per minute) [CI95%: 9.938-18.731] (S50-6 Fig).

193 **3.7.** The prevalence of 2019 coronavirus based on the laboratory findings

194 The mean of white blood cell (WBC) of patients was reported 5.063 ($\times 10^9$ per L) [CI 95%: 4.74-5.37]. The most patients with COVID-19 (54.36%) were in the range of 4 and 10 (count, $\times 10^9$ 195 per L) of WBC [CI 95%: 41.11-67.00]. The mean of leucocytes was reported 5.93 (× 10⁹ per L) 196 [CI 95%: 5.11-6.74]. The most patients with COVID-19 (24.76%) were in the range of more than 197 198 $10 (\times 10^9 \text{ per L})$ of leucocytes [CI 95%: 17.39-33.96]. The mean of lymphocyte was found 1.01 (×10⁹ per L) [CI 95%: 0.9509-1.0872]. In this study, the most patients with COVID-19 (39.56%) 199 were in the range of more than 1.0 ($\times 10^9$ per L) of lymphocyte [CI 95%: 30.32-49.61]. The mean 200 201 of neutrophil was shown 3.94 (× 10⁹ per L) [CI 95%: 3.599-4.283]. As shown in ..., 13.14% of patients with COVID-19 had an increasing in the neutrophil [CI 95%: 5.71-1.50], and 9.37% had 202 203 a decreasing in the neutrophil [CI 95%:7.61-21.73]. The mean of hemoglobin was reported 134.96 204 (g/L) [CI 95%: 131.981-137.947]. As shown in ..., 37.35% of patients with COVID-19 had a decreasing in the hemoglobin [CI 95%: 24.62-52.11]. The mean of platelet was reported 202.75 205 (×10⁹ per L) [CI 95%: 191.530-213.982]. The most patients with COVID-19 (39.81%) had range 206 higher than 100 (\times 10⁹ per L) of platelet [CI 95%: 16.68-68.59]. The mean of prothrombin time 207 was reported 12.18 s [CI 95%: 11.62-12.74]. Although, the mean of activated partial 208 209 thromboplastin time was found 32.21 s [CI 95%: 29.40-35.02]. About 14.48% of patients with COVID-19 had an increasing in the neutrophil [CI 95%: 7.42-26.36], and 7.38% had a decreasing 210 in the neutrophil [CI 95%: 10.14-32.15]. The mean of the D-dimer was found 0.548 µg/L [CI 95%: 211 212 0.478-0.618]. About 30.89% of patients with COVID-19 had an increasing in the D-dimer [CI 95%: 21.09-42.77]. The mean of aspartate aminotransferase (AST) was reported 28.95 IU/L [CI 213 95%: 25.243-32.659]. In this regards, 22.09 % of patients with COVID-19 had an increasing in 214 215 the AST [CI 95%: 17.43-27.58]. Another frequent abnormal laboratory finding in patients with

COVID-19 had increasing levels in the creatinine (48.21%) [CI 95%: 19.61-78.03]. Other hands, 216 217 4.12 % of patients with COVID-19 had high levels of troponin I [CI 95%: 2.78-5.46]. According to confirmed COVID-19 subjects, the mean of urea nitrogen was reported 4.702 mmol/L [CI 95%: 218 219 4.39-5.01]. Among the patients, 22.94% had high levels of the urea nitrogen [CI 95%: 6.26-57.03]. Procalcitonin levels lower than 0.25 ng/mL was seen in 64.97% of the patients. Also, the patients 220 221 with high levels of C-reactive proteins was estimated 56.8% [CI 95%: 33.75-77.23]. The mean of creatine kinase was 105.34 U/L [CI 95%: 95.258-115.421]. In fact, 38.53% of patients had lower 222 than 185 U/L of creatine kinase [CI 95%: 12.81-72.79]. Based on confirmed COVID-19 subjects, 223 224 the means of myoglobin, glucose, potassium, alanine aminotransferase, sodium, albumin, and lactate dehydrogenase were 43.42 ng/mL [CI 95%: 26.458-60.385], 6.415 mmol/L [CI 95%: 225 6.061-6.769], 3.905 mmol/L [CI 95%: 3.803-4.008], 26.358 U/L [CI 95%: 24.062-28.654], 138.56 226 mmol/L [CI 95%: 138.123-139.001], 37.488 g/L [CI 95%: 34.812-40.165], and 284.265 U/L [CI 227 95%: 262.114-306.415], respectively (S58-101 Fig). 228

3.8. The prevalence of 2019 coronavirus based on the radiologic findings

230 To diagnoses of COVID-19, imaging of chest X-Ray (CXR) and chest CT-scan were common. The study shows that the most common pattern of parenchymal involvement was bilateral 231 pneumonia involvement and ground-glass opacification/opacity (GGO). In fact, three fourths of 232 patients (78.25%) had bilateral pneumonia involvement [CI 95%: 60.59-8938], and 58.37% had 233 GGO [CI 95%: 45.11-70.52]. This study shows that 46.83% of patients had both of consolidation 234 and GGOs [CI 95%: 34.26-59.82]. Absence of both GGOs and consolidation were seen in 12.78% 235 of patients [CI 95%: 4.72-30.24]. Also, consolidation was seen in 29.43% of patients [CI 95%: 236 20.2-40.71]. Based on CT-Scan findings, crazy-paving, vascular enlargement, air bronchus gram 237 sign, and air trapping were seen in 22.55% [CI 95%: 14.26-33.76], 43.59% [CI 95%: 6.34-89.82], 238

239 61.79% [CI 95%: 50.02-72.32], and 11.76% [CI 95%: 5.38-23-81], respectively. This study also 240 shows that patients who suffer from nodular opacities, reversed halo sign, bronchus deformation due to fibrosis and strip like lesions, pleural retraction sign, and pleural effusion were 13.99% [CI 241 242 95%: 5.53-31.13], 2.54% [CI 95%: 0.96-6.58], 47.62% [CI 95%: 27.85-68.16], 56.45% [CI 95%: 43.97-68.17], and 7.15% [CI 95%: 4.65-10.84], respectively. The most common sites of the lung 243 involvement were lower lobe 91.70% [CI 95%: 82.70-96.23]. Also, 66.34% of patients had 244 peripheral involvement [CI 95%: 47.89-80.86], and 64.73% had punctate ground glass opacities 245 [CI 95%: 15.97-94.66]. Five affected lobes were involved in the most of patients 34.59% [CI 95%: 246 247 27.32-42.66] (S102-127 Fig).

3.9. The prevalence of 2019 coronavirus based on the therapies

To treatment of COVID-19, the most common patients (86.45%) took antiviral drugs [CI 95%: 76.34-92.65] and 75.09% took antibiotic [CI 95%: 61.65-84.97]. As shown in ..., oxygen therapy and interferon therapy were seen in 72% [CI 95%: 47.85-87.82], and 68.78% [CI 95%: 10.63-97.61] of patients. Corticosteroid therapy and Intravenous immunoglobulin therapy were seen in about 27% of patients, [CI 95%: 20.54-35], and [CI 95%: 14.6-46.43], respectively (S128-140 Fig).

255 **3.10. Outcomes**

Remained in hospital was required in 62.38% of patients with COVID-19 [CI 95%: 47.43-76.06]. The pooled mortality rate of the patients was about 4.55% [CI 95%: 2.49-8.15]. The discharge and recovery rates of patients with COVID-19 were estimated 25.88% [CI 95%: 15.91-39.18], and 6.49% [CI 95%: 0.11-80.93]. The subgroup analysis shows that there was no significant difference between male and female in the patients with COVID-19 (P = 0.9008), direct and indirect exposure of patients (P = 0.1094), hemoglobin (P = 0.092), urea nitrogen (P = 0.1121), and CRP (P = 0.5716). On the other hands, there was a significant difference between increasing and decreasing of the body temperature (P = 0.004), PO₂ (P = 0.034), WBC (P = 0.0001), leucocytes (P=0.0001), and lymphocyte (P=0.0006). Meanwhile there was a significant difference between increasing and decreasing of the neutrophil (P=0.0001), platelet (P=0.0001), prothrombin time (P=0.0001), activated partial thromboplastin time (P=0.0001), d-dimer (P=0.002), AST (P=0.0001), creatinine (P=0.0001), bilirubin (P=0.0001), Creatine kinase (P=0.0001), myoglobin (P=0.0001), glucose (P=0.877), albumin (P=0.0165), and lactate dehydrogenase (P=0.745) (S141-4 Fig).

269 **3.11. Publication bias**

270 The publication bias in this study was evaluated by Begg's and Egger's tests. The publication bias

by Begg's test was calculated 0.68, and the Egger's test was calculated 0.87. The probability of the

publication bias in this study was not significant (Fig 2).

Fig 2. Publication bias of studies included.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3631253

274 4. Discussion

This study has evaluated the COVID-19 clinical characteristics, complications, and comorbidity 275 to the comparison of the latest information about the COVID-19 pandemic. The mean age of 276 patients with COVID-19 was estimated 49.43 years. Most of patients was male. The BMI of 277 patients was in normal rate. 33.5% of patients were health care workers. More half of the patients 278 had direct exposure history. The most common clinical symptoms were fever, cough, myalgia and 279 dyspnea. The most common comorbidities were acute respiratory distress syndrome, chronic 280 medical illness, hypertension, and diabetes. In the terms of the laboratory abnormalities, the most 281 282 patients had high levels of leucocytes, lymphocyte, neutrophil, platelet, D-dimer, AST, Creatinine, troponin I, urea nitrogen, Creatine Kinase, and C-reactive proteins. Majority of patients had a 283 decreasing in the hemoglobin. CT-Scan imaging showed that most of patients involved with 284 bilateral pneumonia, and GGO. Crazy-paving, vascular enlargement, air bronchus gram sign, and 285 air trapping were also seen. The most common regions of the lung involvement were lower lobe. 286 Also, majority of patients had peripheral involvement, and had punctate ground glass opacities. 287

This study showed that fever (82.72%), cough (57.69%), (25.20%) myalgia or fatigue, and dyspnea 288 (20.87%) were the most common symptoms. Nasiri et al fund that fever (83.0%), cough (65.2%) 289 and dyspnea (27.4%) were the most common symptoms ⁹³. Chen et al estimated fever and cough 290 were the most common clinical finding in 87.1% and 36.5% of patients, respectively ⁸⁸. Chen et al 291 showed the cardiovascular and cerebrovascular diseases at 21.7% of the patients ⁸⁸. Our study 292 293 showed the most common comorbidities were ARDS, (30.4%), chronic medical illness (22.25%), hypertension (17.47%), and diabetes (11.19%). In this respect, the results of our study were 294 inconsistent with those of Nasiri et al ⁹³. They found that the most common comorbidities were 295 hypertension (18.5 %), cardiovascular diseases (14.9 %) and diabetes (10.8 %) ⁹³. Yang et al, also 296

297 showed that hypertension $(17 \pm 7\%)$, diabetes $(8 \pm 6\%)$, and cardiovascular diseases $(5 \pm 4\%)$ were the most common comorbid findings ¹⁰. The high prevalence of ARDS among patients with 298 COVID-19 may be a case of the role of these viruses in inducing of the ARDS ⁹⁴. The high 299 300 prevalence of hypertension and cardiovascular comorbidities may be regarding the important role of angiotensin-converting enzyme inhibitors (ACEI) in COVID-19. Based on researches 301 angiotensin-converting enzyme 2 (ACE2) receptor was identified as the receptor used by COVID-302 19 to infect human cells. Previous studies showed that the function of ACEI results in the 303 upregulation of ACE2 ⁹⁵. Therefore, the increase in ACE2 levels may result in a greater risk of 304 infection with the COVID-19 [31]. 305

Based on the laboratory abnormalities, the most patients had high levels of the C-reactive proteins 306 (56.8%), Creatine Kinase (48.21%), Creatinine (48.21%), platelet (39.81%), lymphocyte 307 (39.56%), leucocytes (24.76%), D-dimer (30.89%), neutrophil (14.48%), AST (22.09%), troponin 308 I (4.12%), and urea nitrogen (22.94%). Wang observed that the C-reactive protein levels in the 309 early stage of COVID-19 may show lung lesions and disease severity. C-reactive protein levels 310 also could show disease changes, especially for patients in critical condition ⁹⁶. Wang et al also 311 demonstrated that most patients with severe acute respiratory syndrome (SARS) had high levels 312 of the CRP ⁹⁷. However, Carlos Lopez-Delgado previously showed that thrombocytopenia and 313 lymphopenia strongly increased a higher risk of mortality in SARS and H1N1 influenza ⁹⁸. 314 The incubation period of patients was estimated at 5 days. Duration of illness to dyspnea was 315

reported 13 days, the first hospital to ICU was reported 5 days, the onset of symptom to the hospital was estimated 6 days, and the first symptom to death was reported 17 days. In this respect, the results of our study were consistent with those of Nasiri et al ⁹³. Nasiri showed that the mean duration between hospitalization and death was 17.5 days ⁹³. Feng et al showed that duration
between hospitalization and death was 17.4 days in patients with SARS ⁹⁹.

This study has limitations. Most of the clinical findings were from observational studies. This study not only Chinese studies, but also needs other countries for comprehensive results globally. The pooled mortality rate of the patients was about 4.55%. Guan reported the mortality rate of the patients with COVID-19 was 1.4% ¹⁰⁰. In this respect, the results of our study were inconsistent with those Li et al (7%) ⁹³, Qian et al (8.9%) ¹⁰¹, and Rodriguez et al (13.9%) ¹⁰². In the current study, early recognition, early intervention, and early centered-quarantine may be contributing factors in the low mortalities ¹⁰³.

328

329 **5. Limitations**

the inclusion of studies with different inclusion and exclusion criteria, and there is no consensus 330 definition of COVID-19 expressed is one of the main limitations of this meta-analysis to be 331 mentioned. Otherwise most of the information is for China and the results cannot be generalized 332 to the whole world because of nationality, ethnicity, race, lifestyle and etc. Also, data were 333 accessed by using Guilan University of Medical Sciences' -Iran Ministry of Health & Medical 334 Education- VPN which some databases are not fully accessible. Most of the articles were 335 preprinted and not reviewed. This will be challenging the accuracy and precision of the results of 336 the original articles, and the use of previous articles. However, the research team reviewed each 337 338 article carefully.

- 340
- 341

342 6. Conclusion

COVID-19 has turned the new leaf in the world people's lives with various cultures, languages, and traditions. The mortality rate in our study was 4.55% and the mean duration between hospitalization and death was 17 days. It seems to be the rate of mortality of patients with COVID-19 is decreasing, gradually. It could be related to the early recognition, early intervention, and early centered-quarantine in the world.

- 348
- 349 **7. Supporting information**
- 350 S1 File. PRISMA Checklist
- 351 S2 File. The review protocol which has been registered in PROSPERO International
- 352 Prospective Register of Systematic Reviews.
- 353 S3 File. Newcastle-Ottawa scale checklist.
- 354 S4 File. Data characteristics (Full details) (MS Excel).
- 355 S1 Fig. The percentage of direct exposure history in patients with COVID-19
- 356 S2 Fig. The percentage of indirect exposure history in patients with COVID-19
- 357 S3 Fig. The percentage of total exposure history in patients with COVID-19
- 358 S4 Fig. The prevalence of age in patients with COVID-19
- 359 S5 Fig. The percentage of gender age in patients with COVID-19
- 360 S6 Fig. The prevalence of BMI in patients with COVID-19
- 361 S7 Fig. The percentage of occupation (HCWs) in patients with COVID-19
- 362 S8 Fig. The percentage of acute respiratory distress syndrome (ARDS) in patients with
 363 COVID-19
- 364 S9 Fig. The percentage of acute cardiac injury in patients with COVID-19

365	S10 Fig.	The percentage of acute kidney injury in patients with COVID-19
366	S11 Fig.	The percentage of acute respiratory injury in patients with COVID-19
367	S12 Fig.	The percentage of sptic shock in patients with COVID-19
368	S13 Fig.	The percentage of diabetes in patients with COVID-19
369	S14 Fig.	The percentage of hypertension in patients with COVID-19
370	S15 Fig.	The percentage of cardiovascular diseases (CVD) in patients with COVID-19
371	S16 Fig.	The percentage of COPD in patients with COVID-19
372	S17 Fig.	The percentage of nervous system in patients with COVID-19
373	S18 Fig.	The percentage of malignancies in patients with COVID-19
374	S19 Fig.	The percentage of chronic medical illness in patients with COVID-19
375	S20 Fig.	The percentage of endocrine system diseases in patients with COVID-19
376	S21 Fig.	The percentage of digestive system diseases in patients with COVID-19
377	S22 Fig.	The percentage of chronic kidney diseases in patients with COVID-19
378	S23 Fig.	The percentage of chronic liver diseases in patients with COVID-19
379	S24 Fig.	The percentage of Fever in patients with COVID-19
380	S25 Fig.	The percentage of Chill in patients with COVID-19
381	S26 Fig.	The percentage of Temperature (°C) in patients with COVID-19
382	S27 Fig.	The percentage of Cough in patients with COVID-19
383	S28 Fig.	The percentage of Sore throat in patients with COVID-19
384	S29 Fig.	The percentage of Rhinorrhea in patients with COVID-19
385	S30 Fig.	The percentage of Shortness of breath in patients with COVID-19
386	S31 Fig.	The percentage of Chest tightness in patients with COVID-19
387	S32 Fig.	The percentage of Chest pain in patients with COVID-19

388	S33 Fig.	The percentage of Dyspnea in patients with COVID-19
389	S34 Fig.	The percentage of Myalgia in patients with COVID-19
390	S35 Fig.	The percentage of Sputum production in patients with COVID-19
391	S36 Fig.	The percentage of Headache in patients with COVID-19
392	S37 Fig.	The percentage of Hemoptysis in patients with COVID-19
393	S38 Fig.	The percentage of Nausea and vomiting in patients with COVID-19
394	S39 Fig.	The percentage of Diarrhea in patients with COVID-19
395	S40 Fig.	The percentage of Anosemia in patients with COVID-19
396	S41 Fig.	The percentage of Anorexia in patients with COVID-19
397	S42 Fig.	The percentage of Rash in patients with COVID-19
398	S43 Fig.	Mean of days Incubation period in patients with COVID-19
399	S44 Fig.	Mean of days Illness onset to dyspnea in patients with COVID-19
400	S45 Fig.	Mean of days First hospital to ICU in patients with COVID-19
401	S46 Fig.	Mean of days Onset of symptom to hospital in patients with COVID-19
402	S47 Fig.	Mean of days Onset of symptom to ICU in patients with COVID-19
403	S48 Fig.	Mean of days ARDS and needed ICU in patients with COVID-19
404	S49 Fig.	Mean of days symptom to death in patients with COVID-19
405	S50 Fig.	Mean Diastolic pressure in patients with COVID-19
406	S51 Fig.	Mean Systolic pressure in patients with COVID-19
407	S52 Fig.	Mean PO2 (kpa, range80-100) in patients with COVID-19
408	S53 Fig.	Decreased PO2 (kpa, range80-100) in patients with COVID-19
409	S54 Fig.	Mean O2 sat (range \geq 95%) in patients with COVID-19
410	S55 Fig.	Mean Heart rate (Beats per minute) in patients with COVID-19

411	S56 Fig.	Mean Respiratory rate in patients with COVID-19
412	S57 Fig.	Mean WBC (count, $\times 10^9$ per L Range) in patients with COVID-19
413	S58 Fig.	Sub grouped analysis of WBC (count, $\times 10^9$ per L Range) in patients with COVID-
414		19
415	S59 Fig.	Mean Leucocytes (× 10^9 per L; normal range 3.5–9.5) range in patients with
416		COVID-19
417	S60 Fig.	Sub grouped analysis of Leucocytes ($\times 10^9$ per L; normal range 3.5–9.5) range in
418		patients with COVID-19
419	S61 Fig.	Mean Lymphocyte ($\times 10^9$ per L) (range 1.1–3.2) range in patients with COVID-19
420	S62 Fig.	Sub grouped analysis of Lymphocyte ($\times 10^9$ per L) (range 1.1–3.2) range in patients
421		with COVID-19
422	S63 Fig.	Mean Neutrophil (count, $\times 10^9$ per L range) in patients with COVID-19
423	S64 Fig.	Sub grouped analysis of Neutrophil (count, $\times 10^9$ per L range) in patients with
424		COVID-19
425	S65 Fig.	Mean Hemoglobin (g/L; normal range 130.0-175.0) range in patients with
426		COVID-19
427	S66 Fig.	Sub grouped analysis of Hemoglobin (g/L; normal range 130.0-175.0) range in
428		patients with COVID-19
429	S67 Fig.	Mean Platelet (count, $\times 10^9$ per L range) in patients with COVID-19
430	S68 Fig.	Sub grouped analysis of Platelet (count, $\times 10^9$ per L range) in patients with
431		COVID-19
432	S69 Fig.	Mean Prothrombin time (s Range) in patients with COVID-19
433	S70 Fig.	Sub grouped analysis of Prothrombin time (s Range) in patients with COVID-19

434	S71 Fig.	Mean Activated partial thromboplastin time (s Range) in patients with COVID-19
435	S72 Fig.	Sub grouped analysis of Activated partial thromboplastin time (s Range) in patients
436		with COVID-19
437	S73 Fig.	Mean D-dimer (μ g/L; normal range 0.0–1.5) Range in patients with COVID-19
438	S74 Fig.	Sub grouped analysis of D-dimer (μ g/L; normal range 0.0–1.5) Range in patients
439		with COVID-19
440	S75 Fig.	Mean AST (IU/L, range 8-40) Range in patients with COVID-19
441	S76 Fig.	Sub grouped analysis of AST (IU/L, range 8-40) Range in patients with COVID-
442		19
443	S77 Fig.	Mean Creatinine (μ mol/L range) in patients with COVID-19
444	S78 Fig.	Sub grouped analysis of Creatinine (μ mol/L range) in patients with COVID-19
445	S79 Fig.	Mean Troponin in patients with COVID-19
446	S80 Fig.	Total Bilirubin (U/L; normal range $50.0-310.0$) in patients with COVID-19
447	S81 Fig.	Sub grouped analysis of Increased bilirubin in patients with COVID-19
448	S82 Fig.	Mean Urea nitrogen (mmol/L, range 2.6–7.5) in patients with COVID-19
449	S83 Fig.	Sub grouped analysis of Decreased Urea nitrogen in patients with COVID-19
450	S84 Fig.	Mean Procalcitonin (ng/mL) in patients with COVID-19
451	S85 Fig.	Sub grouped analysis of Procalcitonin in patients with COVID-19
452	S86 Fig.	Mean CRP (mg/dL) in patients with COVID-19
453	S87 Fig.	Sub grouped analysis of CRP in patients with COVID-19
454	S88 Fig.	Mean Erythrocyte in patients with COVID-19
455	S89 Fig.	Mean Creatine kinase (U/L; normal range $50.0-310.0$) in patients with COVID-19
456	S90 Fig.	Sub grouped analysis of Creatine kinase in patients with COVID-19

457	S91 Fig.	Mean Myoglobin (ng/mL; normal range $0.0-146.9$) in patients with COVID-19
458	S92 Fig.	Sub grouped analysis of Myoglobin in patients with COVID-19
459	S93 Fig.	Mean Glucose (mmol/L; normal range $3.9-6.1$) in patients with COVID-19
460	S94 Fig.	Sub grouped analysis of Glucose in patients with COVID-19
461	S95 Fig.	Mean Potassium (mmol/L) in patients with COVID-19
462	S96 Fig.	Mean Alanine aminotransferase/ALT (U/L) in patients with COVID-19
463	S97 Fig.	Mean Sodium (mmol/L) in patients with COVID-19
464	S98 Fig.	Mean Albumin (g/L, range 35–57) in patients with COVID-19
465	S99 Fig.	Sub grouped analysis of Albumin in patients with COVID-19
466	S100 Fig.	Mean Lactate dehydrogenase/LDH in patients with COVID-19
467	S101 Fig.	Sub grouped analysis of Lactate dehydrogenase/LDH in patients with COVID-19
468	S102 Fig.	The percentage of CXR Unilateral Pneumonia in patients with COVID-19
469	S103 Fig.	The percentage of Chest X-Ray Bilateral Pneumonia in patients with COVID-19
470	S104 Fig.	The percentage of Absence of both GGOs and consolidation in patients with
471		COVID-19
472	S105 Fig.	The percentage of Presence of GGOs with consolidation in patients with COVID-
473		19
474	S106 Fig.	The percentage of GGOs in patients with COVID-19
475	S107 Fig.	The percentage of consolidation in patients with COVID-19
476	S108 Fig.	The percentage of Crazy-paving in patients with COVID-19
477	S109 Fig.	The percentage of Vascular enlargement in patients with COVID-19
478	S110 Fig.	The percentage of Interlobular septal thickening in a crazy-paving pattern in
479		patients with COVID-19

480	S111 Fig.	The percentage of Air Broncho gram sign in patients with COVID-19
481	S112 Fig.	The percentage of Air trapping in patients with COVID-19
482	S113 Fig.	The percentage of Nodular opacities in patients with COVID-19
483	S114 Fig.	The percentage of Reversed halo sign in patients with COVID-19
484	S115 Fig.	The percentage of Discrete pulmonary Nodules with halo sign in patients with
485		COVID-19
486	S116 Fig.	The percentage of Discrete pulmonary Nodules without halo sign in patients with
487		COVID-19
488	S117 Fig.	The percentage of Bronchus deformation due to fibrosis and strip like lesions in
489		patients with COVID-19
490	S118 Fig.	The percentage of Lymphadenopathy in patients with COVID-19
491	S119 Fig.	The percentage of Pleural retraction sign in patients with COVID-19
492	S120 Fig.	The percentage of Pleural effusion in patients with COVID-19
493	S121 Fig.	The percentage of fibrous stripes in patients with COVID-19
494	S122 Fig.	The percentage of patchy Consolidation at CT in patients with COVID-19
495	S123 Fig.	The percentage of Peripheral, Central, Both of lung in patients with COVID-19
496	S124 Fig.	The percentage of Upper, Middle, Lower lobe in patients with COVID-19
497	S125 Fig.	The percentage of Patchy or punctate ground glass opacities in patients with
498		COVID-19
499	S126 Fig.	The percentage of Patients number affected lobe in patients with COVID-19
500	S127 Fig.	The percentage of Interstitial abnormality in patients with COVID-19
501	S128 Fig.	The percentage of Corticosteroid in patients with COVID-19

502	S129 Fig.	The percentage of Intraven	ous immunoglobulin	therapy in	patients with COVID-
	U			12	1

- 503
- 504 S130 Fig. The percentage of Interferon in patients with COVID-19

- 505 S131 Fig. The percentage of Non-Invasive ventilation in patients with COVID-19
- 506 S132 Fig. The percentage of Invasive Mechanical Ventilation in patients with COVID-19
- 507 S133 Fig. The percentage of Immunoglobulin therapy in patients with COVID-19
- 508 S134 Fig. The percentage of Nasal cannula in patients with COVID-19
- 509 S135 Fig. The percentage of Oxygen therapy in patients with COVID-19
- 510 S136 Fig. The percentage of CRRT in patients with COVID-19
- 511 S137 Fig. The percentage of ECMO in patients with COVID-19
- 512 S138 Fig. The percentage of Antifungal in patients with COVID-19
- 513 S139 Fig. The percentage of Antibiotic in patients with COVID-19
- 514 S140 Fig. The percentage of Antiviral in patients with COVID-19
- 515 S141 Fig. The percentage of Discharge in patients with COVID-19
- 516 S142 Fig. The percentage of Recovery in patients with COVID-19
- 517 S143 Fig. The percentage of Remained in hospital in patients with COVID-19
- 518 S144 Fig. The percentage of Death in patients with COVID-19
- 519
- 520

521 **8. Acknowledgment**

522 We would like to express sincere gratitude to Guilan University of Medical Sciences.

523

524 **9. Conflict of interests**

525	The authors	have	declared	that no	competing	interests	exist.
					1 0		

527 **10. Data Availability Statement**

528 All relevant data are within the paper and its Supporting Information files.

529

530 **11. Funding**

531 The author(s) received no specific funding for this work.

532

533 12. Author Contributions

- 534 Mohammad Hossein YektaKooshali and Alireza Jafari contributed equally at this work.
- 535 Conceptualization: Mohammad Hossein YektaKooshali, Alireza Jafari
- 536 Data curation: Mohammad Hossein YektaKooshali, Alireza Jafari
- 537 Formal analysis: Mohammad Hossein YektaKooshali, Alireza Jafari
- 538 Funding acquisition: Mohammad Hossein YektaKooshali, Alireza Jafari
- 539 Investigation: Mohammad Hossein YektaKooshali, Alireza Jafari
- 540 Methodology: Mohammad Hossein YektaKooshali, Alireza Jafari
- 541 Project administration: Mohammad Hossein YektaKooshali, Alireza Jafari
- 542 Resources: Mohammad Hossein YektaKooshali, Alireza Jafari
- 543 Software: Mohammad Hossein YektaKooshali, Alireza Jafari
- 544 Supervision: Mohammad Hossein YektaKooshali, Alireza Jafari, Siavash Falahatkar
- 545 Validation: Mohammad Hossein YektaKooshali, Alireza Jafari,
- 546 Visualization: Mohammad Hossein YektaKooshali, Siavash Falahatkar
- 547 Writing ± original draft: Mohammad Hossein YektaKooshali, Alireza Jafari,
- 548 Writing ± review & editing: Mohammad Hossein YektaKooshali, Alireza Jafari

550 13. References:

551 Mackenzie JS, Smith DW. COVID-19: a novel zoonotic disease caused by a coronavirus from 1. 552 China: what we know and what we don't. *Microbiology Australia* 2020; **41**(1): 45-50. 553 2. Zheng J. SARS-CoV-2: an emerging coronavirus that causes a global threat. International journal 554 of biological sciences 2020; 16(10): 1678. 555 3. Strzelecki A. The second worldwide wave of interest in coronavirus since the COVID-19 556 outbreaks in South Korea, Italy and Iran: a google trends study. arXiv preprint arXiv:200310998 2020. 557 4. Saha A, Gupta K, Patil M. Monitoring and Epidemiological Trends of Coronavirus Disease (COVID-558 19) Around The World. 2020. 559 Sarma JD, Scheen E, Seo S-h, Koval M, Weiss SR. Enhanced green fluorescent protein expression 5. 560 may be used to monitor murine coronavirus spread in vitro and in the mouse central nervous system. 561 Journal of neurovirology 2002; 8(5): 381-91. 562 Organization WH. Coronavirus disease 2019 (COVID-19): situation report, 72. 2020. 6. 563 7. Pan L, Mu M, Yang P, et al. Clinical characteristics of COVID-19 patients with digestive symptoms 564 in Hubei, China: a descriptive, cross-sectional, multicenter study. The American journal of 565 gastroenterology 2020; 115. 566 Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in 8. 567 Wuhan, China. Clinical Infectious Diseases 2020. 568 9. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment 569 coronavirus (COVID-19). Statpearls [internet]: StatPearls Publishing; 2020. 570 Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities in the novel Wuhan coronavirus 10. 571 (COVID-19) infection: a systematic review and meta-analysis. International Journal of Infectious Diseases 572 2020. 573 Guan W-j, Liang W-h, Zhao Y, et al. Comorbidity and its impact on 1590 patients with Covid-19 in 11. 574 China: A Nationwide Analysis. European Respiratory Journal 2020; 55(5). 575 Guo Y-R, Cao Q-D, Hong Z-S, et al. The origin, transmission and clinical therapies on coronavirus 12. 576 disease 2019 (COVID-19) outbreak-an update on the status. *Military Medical Research* 2020; 7(1): 1-10. 577 13. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug 578 *discoveries* & *therapeutics* 2020; **14**(1): 58-60. 579 14. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. 580 Proceedings of the National Academy of Sciences 2020; 117(20): 10970-5. 581 15. Chen C, Huang J, Cheng Z, et al. Favipiravir versus arbidol for COVID-19: a randomized clinical 582 trial. MedRxiv 2020. 583 Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe 16. 584 Covid-19. New England Journal of Medicine 2020. 585 17. Khalili JS, Zhu H, Mak NSA, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: 586 Groundwork for an evaluation concerning COVID-19. Journal of medical virology 2020. 587 Alireza Jafari, Mohammad Hossein YektaKooshali. The demographic, clinical, laboratory, 18. radiological and comorbidity characteristics of the novel coronavirus 2019 (COVID-19): an 588 589 updated systematic review and meta-analysis. PROSPERO 2020 CRD42020173639 Available from: 590 https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020173639. 591 Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa scale (NOS) for assessing the 19. guality of nonrandomised studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute 2011. 592 593 20. Ades A, Lu G, Higgins J. The interpretation of random-effects meta-analysis in decision models. 594 Medical Decision Making 2005; 25(6): 646-54. 595 21. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and 596 random-effects models for meta-analysis. *Research synthesis methods* 2010; 1(2): 97-111.

- 597 22. YektaKooshali MH, Movahedzadeh F, Foumani AA, Sabati H, Jafari A. Is latent tuberculosis
- infection challenging in Iranian health care workers? A systematic review and meta-analysis. *PloS one*2019; **14**(10).
- JafariNezhad A, YektaKooshali MH. Lung cancer in idiopathic pulmonary fibrosis: A systematic
 review and meta-analysis. *PloS one* 2018; **13**(8).
- 602 24. Wuhan Municipal Health Commision Wuhan Municipal Commission of Health and Health on
- Pneumonia of New Coronavirus Infection. [(accessed on 20 January 2020)]; Available online:
 http://wjw.wuhan.gov.cn/front/web/showDetail/2020012009077.
- 605 25. Ai J-W, Zhang H-C, Xu T, et al. Optimizing diagnostic strategy for novel coronavirus pneumonia, a 606 multi-center study in Eastern China. *medRxiv* 2020.
- 607 26. Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 608 (COVID-19) in China: a report of 1014 cases. *Radiology* 2020: 200642.
- 609 27. Bajema KL, Oster AM, McGovern OL, et al. Persons evaluated for 2019 novel coronavirus—
- 610 United States, January 2020. *Morbidity and Mortality Weekly Report* 2020; **69**(6): 166.
- 611 28. Bernheim A, Mei X, Huang M, et al. Chest CT findings in coronavirus disease-19 (COVID-19): 612 relationship to duration of infection. *Radiology* 2020: 200463.
- 613 29. Cai Q, Huang D, Ou P, Yu H, Zhu Z, Xia Z. COVID-19 in a Designated Infectious Diseases
- HospitalOutside Hubei Province, China. medRxiv. 2020. *DOI*; **10**(2020.02): 17.20024018.
- 615 30. Cao M, Zhang D, Wang Y, et al. Clinical features of patients infected with the 2019 novel
 616 coronavirus (COVID-19) in Shanghai, China. *MedRxiv* 2020.
- 617 31. Cao W. Clinical features and laboratory inspection of novel coronavirus pneumonia (COVID-19)
 618 in Xiangyang, Hubei. *medRxiv* 2020.
- 619 32. Chang D, Lin M, Wei L, et al. Epidemiologic and clinical characteristics of novel coronavirus
 620 infections involving 13 patients outside Wuhan, China. *Jama* 2020; **323**(11): 1092-3.
- 621 33. Chen J, Fan H, Zhang L, et al. Retrospective analysis of clinical features in 101 death cases with 622 COVID-19. *medRxiv* 2020.
- 62334.Chen L, Liu H, Liu W, Liu J, Liu K, Shang J. Analysis of clinical characteristics of 29 cases of new624coronavirus pneumonia in 2019. Chinese Journal of Tuberculosis and Respiratory Diseases 2020.
- 625 35. Chen L, Liu H, Liu W, et al. Analysis of clinical features of 29 patients with 2019 novel coronavirus
- pneumonia. Zhonghua jie he he hu xi za zhi= Zhonghua jiehe he huxi zazhi= Chinese journal of
 tuberculosis and respiratory diseases 2020; 43: E005-E.
- 628 36. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 629 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *The Lancet* 2020; **395**(10223): 507-630 13.
- 631 37. Cheng J, Huang C, Zhang G, et al. Epidemiological characteristics of novel coronavirus
- pneumonia in Henan. *Zhonghua jie he he hu xi za zhi= Zhonghua Jiehe he Huxi Zazhi= Chinese Journal of Tuberculosis and Respiratory Diseases* 2020; 43: E027-E.
- 634 38. Cheng VC, Wong S-C, Chen JH, et al. Escalating infection control response to the rapidly evolving 635 epidemiology of the Coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong. *Infection*
- 636 *Control & Hospital Epidemiology* 2020; **41**(5): 493-8.
- 637 39. Chung M, Bernheim A, Mei X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV).
 638 *Radiology* 2020; **295**(1): 202-7.
- 639 40. Cui P, Chen Z, Wang T, et al. Clinical features and sexual transmission potential of SARS-CoV-2
 640 infected female patients: a descriptive study in Wuhan, China. *MedRxiv* 2020.

641 41. Fang Y, Zhang H, Xie J, et al. Sensitivity of chest CT for COVID-19: comparison to RT-PCR.

- 642 *Radiology* 2020: 200432.
- Feng K, Yun Y, Wang X, et al. Analysis of CT features of 15 children with 2019 novel coronavirus
 infection. *Zhonghua er ke za zhi= Chinese journal of pediatrics* 2020; **58**: E007-E.

645 43. Feng Z, Yu Q, Yao S, et al. Early prediction of disease progression in 2019 novel coronavirus 646 pneumonia patients outside Wuhan with CT and clinical characteristics. *MedRxiv* 2020. 647 Han R, Huang L, Jiang H, Dong J, Peng H, Zhang D. Early clinical and CT manifestations of 44. 648 coronavirus disease 2019 (COVID-19) pneumonia. American Journal of Roentgenology 2020: 1-6. 649 Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 45. 650 screened among close contacts in Nanjing, China. Science China Life Sciences 2020; 63(5): 706-11. 651 46. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet 2020; 395(10223): 497-506. 652 653 47. Huang Y, Zhou H, Yang R, Xu Y, Feng X, Gong P. Clinical characteristics of 36 non-survivors with 654 COVID-19 in Wuhan, China. medRxiv 2020. 655 48. HuiDS IAE, Madani T, Ntoumi F, Koch R, Dar O. The continuing 2019-nCoV epidemicthreatof 656 novel coronaviruses to global health: the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J 657 Infect Dis 2020; **91**: 264-6. 658 49. Jian-ya G. Clinical characteristics of 51 patients discharged from hospital with COVID-19 in 659 Chongqing, China. medRxiv 2020. 660 Ki M. Epidemiologic characteristics of early cases with 2019 novel coronavirus (2019-nCoV) 50. 661 disease in Korea. *Epidemiology and health* 2020; **42**. 662 51. Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (COVID-19) 663 from publicly reported confirmed cases: estimation and application. Annals of internal medicine 2020; **172**(9): 577-82. 664 665 52. Lei Y. Clinical features of imported cases of coronavirus disease 2019 in Tibetan patients in the 666 Plateau area. MedRxiv 2020. 667 53. Li K, Wu J, Wu F, et al. The clinical and chest CT features associated with severe and critical 668 COVID-19 pneumonia. Investigative radiology 2020; 55(6): 327-31. 669 54. Li Q, Feng W, Quan Y-H. Trend and forecasting of the COVID-19 outbreak in China. Journal of 670 Infection 2020; 80(4): 469-96. 671 Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-55. 672 infected pneumonia. New England Journal of Medicine 2020. 673 56. Li Y, Xia L. Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management. 674 American Journal of Roentgenology 2020; 214(6): 1280-6. Liang Y, Liang J, Zhou Q, et al. Prevalence and clinical features of 2019 novel coronavirus disease 675 57. 676 (COVID-19) in the Fever Clinic of a teaching hospital in Beijing: a single-center, retrospective study. 677 medRxiv 2020. 678 58. Linton NM, Kobayashi T, Yang Y, et al. Incubation period and other epidemiological 679 characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly 680 available case data. Journal of clinical medicine 2020; 9(2): 538. 681 59. Liu K, Fang Y-Y, Deng Y, et al. Clinical characteristics of novel coronavirus cases in tertiary 682 hospitals in Hubei Province. Chinese medical journal 2020. 683 Liu W, Wang F, Li G, et al. Analysis of 2019-nCoV Infection and Clinical Manifestations of 60. 684 Outpatients: An Epidemiological Study from the Fever Clinic in Wuhan, China. 2020. 685 61. Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China Life Sciences 2020; 63(3): 364-74. 686 687 Pan F, Ye T, Sun P, et al. Time course of lung changes on chest CT during recovery from 2019 62. novel coronavirus (COVID-19) pneumonia. Radiology 2020: 200370. 688 689 63. Pan Y, Guan H, Zhou S, et al. Initial CT findings and temporal changes in patients with the novel 690 coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. European radiology 2020: 691 1-4.

692 64. Peng Y, Meng K, Guan H, et al. Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nCoV. Zhonghua xin xue guan bing za zhi 2020; 48: E004-E. 693 694 65. Qian G-Q, Yang N-B, Ding F, et al. Epidemiologic and Clinical Characteristics of 91 Hospitalized 695 Patients with COVID-19 in Zhejiang, China: A retrospective, multi-centre case series. QJM: An 696 International Journal of Medicine 2020. 697 66. Song F, Shi N, Shan F, et al. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. 698 Radiology 2020; 295(1): 210-7. 699 67. Song Q, Zhao H, Fang L, Liu W, Zheng C, Zhang Y. Study on assessing early epidemiological 700 parameters of coronavirus disease epidemic in China. Zhonghua liu xing bing xue za zhi= Zhonghua 701 liuxingbingxue zazhi 2020; 41(4): 461-5. 702 68. Spiteri G, Fielding J, Diercke M, et al. First cases of coronavirus disease 2019 (COVID-19) in the 703 WHO European Region, 24 January to 21 February 2020. Eurosurveillance 2020; 25(9): 2000178. 704 69. Sun K, Chen J, Viboud C. Early epidemiological analysis of the coronavirus disease 2019 outbreak 705 based on crowdsourced data: a population-level observational study. The Lancet Digital Health 2020. 706 70. Surveillances V. The epidemiological characteristics of an outbreak of 2019 novel coronavirus 707 diseases (COVID-19)—China, 2020. China CDC Weekly 2020; 2(8): 113-22. 708 Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor 71. 709 prognosis in patients with novel coronavirus pneumonia. Journal of thrombosis and haemostasis 2020; 710 **18**(4): 844-7. Tian S, Hu N, Lou J, et al. Characteristics of COVID-19 infection in Beijing. Journal of Infection 711 72. 712 2020. 713 73. To KK-W, Tsang OT-Y, Yip CC-Y, et al. Consistent detection of 2019 novel coronavirus in saliva. 714 Clinical Infectious Diseases 2020. 715 Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel 74. 716 coronavirus-infected pneumonia in Wuhan, China. Jama 2020; 323(11): 1061-9. 717 75. Wang L, Gao Y-H, Lou L-L, Zhang G-J. The clinical dynamics of 18 cases of COVID-19 outside of 718 Wuhan, China. European Respiratory Journal 2020; 55(4). 719 Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and 76. 720 death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA internal medicine 721 2020. Wu J, Liu J, Zhao X, et al. Clinical characteristics of imported cases of COVID-19 in Jiangsu 722 77. 723 province: a multicenter descriptive study. Clin Infect Dis 2020; 10. 724 Wu J, Wu X, Zeng W, et al. Chest CT findings in patients with coronavirus disease 2019 and its 78. 725 relationship with clinical features. Investigative radiology 2020; 55(5): 257. 726 79. Wu W, Li Y, Wei Z, et al. Investigation and analysis on characteristics of a cluster of COVID-19 727 associated with exposure in a department store in Tianjin. Zhonghua liu xing bing xue za zhi= Zhonghua 728 liuxingbingxue zazhi 2020; **41**(4): 489-93. 729 80. Xia J, Tong J, Liu M, Shen Y, Guo D. Evaluation of coronavirus in tears and conjunctival secretions 730 of patients with SARS-CoV-2 infection. Journal of medical virology 2020; 92(6): 589-94. 731 Xu X-W, Wu X-X, Jiang X-G, et al. Clinical findings in a group of patients infected with the 2019 81. 732 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. bmj 2020; 368. 733 82. Xu Y, Li Y-r, Zeng Q, et al. Clinical characteristics of SARS-CoV-2 pneumonia compared to controls 734 in Chinese Han population. medRxiv 2020. 735 Xu Y-H, Dong J-H, An W-M, et al. Clinical and computed tomographic imaging features of novel 83. 736 coronavirus pneumonia caused by SARS-CoV-2. Journal of Infection 2020. 737 Yang W, Cao Q, Qin L, et al. Clinical characteristics and imaging manifestations of the 2019 novel 84. 738 coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. Journal of 739 Infection 2020.

740 Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 85. 741 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet 742 Respiratory Medicine 2020. 743 86. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic features and clinical course of patients 744 infected with SARS-CoV-2 in Singapore. Jama 2020; 323(15): 1488-94. 745 87. Yuan M, Yin W, Tao Z, Tan W, Hu Y. Association of radiologic findings with mortality of patients 746 infected with 2019 novel coronavirus in Wuhan, China. Plos one 2020; 15(3): e0230548. 747 Zhang J-j, Dong X, Cao Y-y, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 88. 748 in Wuhan, China. Allergy 2020. 749 Zhang W, Du R-H, Li B, et al. Molecular and serological investigation of 2019-nCoV infected 89. 750 patients: implication of multiple shedding routes. Emerging microbes & infections 2020; 9(1): 386-9. 751 Zhao W, Zhong Z, Xie X, Yu Q, Liu J. Relation between chest CT findings and clinical conditions of 90. 752 coronavirus disease (COVID-19) pneumonia: a multicenter study. American Journal of Roentgenology 753 2020; 214(5): 1072-7. 754 91. Zhou S, Wang Y, Zhu T, Xia L. CT features of coronavirus disease 2019 (COVID-19) pneumonia in 755 62 patients in Wuhan, China. American Journal of Roentgenology 2020; 214(6): 1287-94. 756 Zhu W, Xie K, Lu H, Xu L, Zhou S, Fang S. Initial clinical features of suspected coronavirus disease 92. 757 2019 in two emergency departments outside of Hubei, China. Journal of Medical Virology 2020. 758 93. Nasiri MJ, Haddadi S, Tahvildari A, et al. COVID-19 clinical characteristics, and sex-specific risk of 759 mortality: Systematic Review and Meta-analysis. *medRxiv* 2020. 760 Jamaati H, Dastan F, Tabarsi P, Marjani M, Saffaei A, Hashemian SM. A Fourteen-day Experience 94. with Coronavirus Disease 2019 (COVID-19) Induced Acute Respiratory Distress Syndrome (ARDS): An 761 762 Iranian Treatment Protocol. Iranian Journal of Pharmaceutical Research 2020; 19(1): 31-6. 763 Sun J, Deng X, Chen X, et al. Incidence of Adverse Drug Reactions in COVID-19 patients in China: 95. 764 an active monitoring study by Hospital Pharmacovigilance System. Clinical Pharmacology & Therapeutics 765 2020. 766 96. Ling W. C-reactive protein levels in the early stage of COVID-19. Medecine et maladies 767 infectieuses 2020. 768 Wang J-T, Sheng W-H, Fang C-T, et al. Clinical manifestations, laboratory findings, and treatment 97. 769 outcomes of SARS patients. *Emerging infectious diseases* 2004; **10**(5): 818. 770 Lopez-Delgado JC, Rovira A, Esteve F, et al. Thrombocytopenia as a mortality risk factor in acute 98. 771 respiratory failure in H1N1 influenza. Swiss medical weekly 2013; 143(1516). 772 Feng D, Jia N, Fang LQ, et al. Duration of symptom onset to hospital admission and admission to 99. 773 discharge or death in SARS in mainland China: a descriptive study. Tropical Medicine & International 774 Health 2009; 14: 28-35. 775 100. Guan W-j, Ni Z-y, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. New 776 England journal of medicine 2020; **382**(18): 1708-20. 777 101. Qian K, Deng Y, Tai Y, Peng J, Peng H, Jiang L. Clinical characteristics of 2019 novel infected 778 coronavirus pneumonia: a systemic review and meta-analysis. medRxiv 2020. 779 102. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and 780 imaging features of COVID-19: A systematic review and meta-analysis. Travel medicine and infectious 781 disease 2020: 101623. 782 103. Sun Q, Qiu H, Huang M, Yang Y. Lower mortality of COVID-19 by early recognition and 783 intervention: experience from Jiangsu Province. Annals of intensive care 2020; 10(1): 1-4. 784

- 785 Table 1- A Systemic Review and Meta-analysis COVID-19 Clinical Characteristics, Complications and
- 786 comorbidity

		NO Study	(CI-95%)	P-value	I ² (%)	P-value Subgroup	I ² (%) Subgroup	Supplementary Data/ Figures
	Direct	37	62.71% (52.22-72.12)	0.0181	96.39		97.18	S1 Fig
Exposure History	Indirect	12	41.01% (24.47-59.87)	0.3507	97.42	0.1094		S2 Fig
	Total	49	57.6% (48.3-66.4)					S3 Fig
Age		64	49.43 (47.44-51.42)	0.0001	98.10			S4 Fig
	Male	68	52.65% (51-54.3)	0.0016	58.56			
Gender	Female	67	47.28% (45.56-49)	0.0019	62.31	0.9008	69.57	S5 Fig
	Total	136						
BMI		4	23.26 (22.28-24.23)	0.0001	85.61			S6 Fig
Occupation	HCWs	5	33.5% (12-64.9)	0.302	96.72			S7 Fig
	Acute respirato ry distress syndrome (ARDS)	8	30.4% (14.4-53.1)	0.088	91.48			S8 Fig
	Acute Cardiac Injury	6	10.16% (6.34-15.9)	0.0001	65.47			S9 Fig
Sui	Acute Kidney Injury	7	4.4% (1.46-12.54)	0.0001	92.1			S10 Fig
nditio	Acute Respirato ry Injury	7	5.49% (3.26-9.09)	0.0001	63.65			S11 Fig
COI	Septic Shock	7	4.61% (1.97-10.41)	0.0001	80.86			S12 Fig
bid	Diabetes	35	11.19% (9.19-13.55)	0.0001	66.95			S13 Fig
lor	Hyperten sion	34	17.47% (13.55-22.24)	0.0001	88.64			S14 Fig
Com	Cardiova scular diseases (CVD)	23	11.16% (6.87-17.65)	0.0001	94.79	-		S15 Fig
	COPD	20	3.56% (2.38-5.32)	0.0001	61.75			S16 Fig
	Nervous system	4	3.5% (1.26-9.31)	0.0001	71.3			S17 Fig
	Malignan cies	23	3.2% (2.33-4.38)	0.0001	26.56			S18 Fig
	Chronic medical illness	5	22.25% (10.62-40.79)	0.0053	90.33			S19 Fig

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3631253

		Endocrin e system diseases	3	8.3% (5.4-12.4)	0.0001	6.44 (Fixed effect size)			S20 Fig
		Digestive system diseases	7	4.62% (2.47-8.46)	0.0001	75.85			S21 Fig
		Chronic kidney diseases	12	3.05% (1.59-6.78)	0.0001	67.87			S22 Fig
	Chronic liver diseases		14	5.94% (3.51-9.9)	0.0001	80.77	-	-	S23 Fig
	Fev	ver	60	82.72% (77.87-86.68)	0.0001	95.24			S24 Fig
	Ch	ill	11	15.02% (7.57-27.61)	0.001	95.13	ł	-	S25 Fig
	ə.	<37.3	10	19.16% (10.55-32.26)	0.0001	96.3			
	atur)	>39	15	14.1% (8.12-23.35)	0.0001	94.02			
	nper. (°C	37.3-38	14	32.38% (25.7-39.87)	0.0001	87.12	0.004	91.87	S26 Fig
	Tem	38.1-39	14	33.39% (22.96-40.51)	0.0001	86.39			
	•		53						
	Cou	ıgh	62	57.69% (50.72-64.37)	0.0307	95.62			S27 Fig
	Sore throat		23	10.18% (6.83-14.91)	0.0001	90.59			S28 Fig
ymptoms	Rhino	rrhea	7	5.9% (3.47-9.17)	0.0001	0 (Fixed effect size)			S29 Fig
and s	Shortness	of breath	11	13.61% (5.98-28.06)	0.0001	94.17			S30 Fig
Sign	Chest ti	ghtness	14	14.55% (9.73-21.19)	0.0001	89.31			S31 Fig
	Chest	pain	11	3.19% (1.02-9.54)	0.0001	93.64	ł	-	S32 Fig
	Dysp	onea	22	20.87% (13.94-30.04)	0.0001	92.86			S33 Fig
	Mya	lgia	52	25.20% (19.62-31.73)	0.0001	94.19	-		S34 Fig
	Sputum p	roduction	20	19.93% (13.38-28.63)	0.0001	94.59			S35 Fig
	Head	ache	42	9.08% (7.08-11.58)	0.0001	83.10			S36 Fig
	Hemo	ptysis	9	3.55% (2.00-6.22)	0.0001	61.99			S37 Fig
	Nausea and	d vomiting	21	6.00% (4.54-7.90)	0.0001	35.81			S38 Fig
	Diar	rhea	43	7.49% (5.87-9.51)	0.0001	72.42			S39 Fig
	Anos	emia	2	6.65%	0.0001	78.44			S40 Fig

				20.1-19.84					
	Anor	exia	2	32.59% 20.02-48.27	0.0303	80.45			S41 Fig
	Ra	sh	1	8.33% 2.09-27.88	0.0012	68.89			S42 Fig
B		Incubatio n period	8	5.540 (5.008-6.073)	0.0001	98.07			S43 Fig
		Illness onset to dyspnea	11	13.303 (11.025-15.581)	0.0001	99.32			S44 Fig
Timing(days)		First hospital to ICU	12	4.798 (3.438-6.158)	0.0001	99.47			S45 Fig
	ming(days)	Onset of symptom to hospital	11	5.935 (4.664-7.201)	0.0001	98.90	-		S46 Fig
		Onset of symptom to ICU	4	6.092 (1.594-10.590)	0.007	99.78	H	-	S47 Fig
		ARDS and needed ICU	2	9.5 (6.56-12.44)	0.0001	100	-		S48 Fig
		Days symptom to death	3	16.647 (13.772-19.523)	0.0001	97.73	H	-	S49 Fig
	D	Diastolic pressure	5	87.887 (82.570-93.205)	0.0001	96.62			S50 Fig
	(mmHg)	Systolic pressure	6	126.56 (123.696- 129.423)	0.0001	63.17			S51 Fig
	PO ₂	Mean	7	88.690 (49.211- 128.169)	0.0001	99.93			S52 Fig
(kp	oa, range80- 100)	Decrease d	3	26.72% (12.52-48.15)			0.034	83.779	G 52 E '
		Total		26.72% (12.52-48.15)			0.034		853 Fig
	O₂ sat ((range ≥9	t 5%))	3	95.141% (92.991-97.291)	0.0001	99.08			S54 Fig
	Heart rate (beats per minute)		9	89.272 (87.870-90.674)	0.0001	60.06			S55 Fig
	Respiratory rate		13	14.335 (9.938-18.731)	0.0001	99.84			S56 Fig
٨		Mean	22	5.063 (4.74-5.37)	0.0001	85.18			S57 Fig
atory	WBC count, ×	<4	12	17.97% (10.17-29.78)	0.0001	94.18			
,abor	10° per L Range	>10	10	14.45% (10.28-19.94)	0.005	61.43	43 0.0001 43 0.0001	93.21	S58 Fig
Τ	капде	4-10	5	54.36% (41.11-67.00)	0.0001	82.43			

	Total		23.53% (18.81-29.00)					
	Mean	10	5.93 (5.11-6.74)	0.0001	95.82			S59 Fig
Leucocytes (× 10 ⁹ per	<10	10	16.25% (6.05-36.89)	0.003	97.55			
L; normal range 3·5–	>10	11	24.76% (17.39-33.96)	0.0001	88.73	0.0001	95.88	S60 Fig
9.5) range	Total		23.40% (16.80-31.61)					
Lymphocy	Mean	34	1.0190 (0.9509-1.0872)	0.0001	97.98			S61 Fig
$(\times 10.9)$	<1.0	23	32.89% (22.65-45.07)	0.0001	93.43			
(range 1 1 3 2)	>1.0	15	39.56% (30.32-49.61)	0.001	90.55	0.0006	92.34	S62 Fig
range	Total		43.04% (40.93-45.18)					
	Mean	34	3.941 (3.599-4.283)	0.0001	94.18			S63 Fig
Neutrophil count, ×	Decrease d	9	9.37% (5.71-1.50)	0.0001	76.05			
10° per L range	Increased	12	13.14% (7.61-21.73)	0.0001	88.42	0.0001	85.64	S64 Fig
	Total	21	10.88% (7.55-15.42)					
Hemoglobi n (g/L;	Mean	21	134.964 (131.981- 137.947)	0.0001	90.36			S65 Fig
normal range	Decrease d	5	37.35% (24.62-52.11)	0.092	78.07			
130·0– 175·0) range	Total	21	37.35% (24.62-52.11)			0.092	90.36	S66 Fig
District	Mean	30	202.756 (191.530- 213.982)	0.0001	98.62			S67 Fig
count, ×	<100	12	11.48 (06.49-19.49)	0.0001	91.89			
range	≥100	12	39.81 (16.68-68.59)	0.4974	95.09	0.0001	93.82	S68 Fig
	Total	24	15.54 (9.56-24.24)					
	Mean	16	12.18 (11.62-12.74)	0.0001	98.59			S69 Fig
Prothrom bin time	Decrease d	3	8.28 (1.28-38.59)	0.0151	93.75			
(s Range)	Increased	5	8.65 (5.56-13.22)	0.0001	57.88	0.0001	53.35	S70 Fig
	Total	8	8.63 (5.62-13.04)					
Activated partial	Mean	11	32.21 (29.40-35.02)	0.0001	98.93			S71 Fig
thrombopl astin time	Decrease d	3	7.38% (10.14-32.15)	0.000	92.55	0.0001	91.75	S72 Fig

(s Range)	Increased	6	14.48% (7.42-26.36)	0.0001	91.25			
	Total	9	13.14% (7.05-23.17)					
D-dimer	Mean	16	0.548 (0.478-0.618)	0.0001	99.92			S73 Fig
(μg/L; normal	Increased	8	30.89% (21.09-42.77)	0.002	92.47	0.002	02.47	074 E'-
range 0.0– 1.5) Range	Total		30.89% (21.09-42.77)			0.002	92.47	874 Fig
AST	Mean	10	28.951 (25.243-32.659)	0.0001	97.06			S75 Fig
(IU/L, range 8–	Increased	5	22.09% (17.43-27.58)	0.0001	56.10	0.0001	02.97	87(F:~
40) Kange	Total		22.09% (17.43-27.58)			0.0001	92.87	576 Fig
	Mean	23	68.47 (65.22-71.07)	0.0001	95.29			S77 Fig
Creatinine	>133	7	48.21% (19.61-78.03)	0.916	95.18			
(µmoi/L range)	≤133	10	5.04% (2.55-9.73)	0.0001	81.71	0.0001	95.29	S78 Fig
	Total	17	9.03% (5.04-15.66)					
Тгор	onin	4	4.12% (2.78-5.46)	0.0001	98.80			S79 Fig
Bilirubin (U/L;	Total bilirubin	21	10.23% (9.32-11.14)	0.0001	98.45			S80 Fig
normal range 50·0– 310·0) range	Increased bilirubin	9	6.61% (3.97-10.79)			0.0001	74.42	S81 Fig
Urea nitrogen	Mean	17	4.702% (4.39-5.01)	0.0001	93.72			S82 Fig
(mmol/L, range2.6– 7.5)	Decrease d	4	22.94% (6.26-57.03)			0.1121	93.66	S83 Fig
	Total	18	0.22% (0.18-0.53)	0.0001	99.93			S84 Fig
	<0.1	5	43.65% (20.04-70.54)	0.6575	88.59			
Procalcito nin (ng/mL)	0.1 to <0.25	3	21.32% (14.1-30.92)	0.0001	1.35 (Fixed effect size)	0.0001	93.93	S85 Fig
	0.25 to 0.5	5	17.78% (3.4-57.05)	0.093	87.89			
	>0.5	9	11.47% (3.45-31.98)	0.0002	96.08			
CRP	Mean	28	37.52% (34.16-40.87)	0.0001	99.9			S86 Fig
(mg/dL)	CRP >60	14	56.8% (33.75-77.23)			0.5716	97.72	S87 Fig
Erythrocyte	Mean	5	41.11	0.0007	87.09			S88 Fig

				(17.21-65.02)					
Creatir kinase	ne e	Mean	18	105.34 (95.25-115.42)	0.0001	99.70			S89 Fig
(U/L; norma	1	≤185	6	38.53% (12.81-72.79)	0.520	96.32			
range 50·0–		≥185	8	14.68% (9.55-21.91)	0.0001	81.91	0.0001	93.94	S90 Fig
310·0) range)	Total	13	16.41% (10.99-23.78)					
Myoglol (ng/mI	oin 4;	Mean	4	43.421 (26.45-60.38)	0.0001	99.96		-	S91 Fig
norma range 0· 146·9) range	1 0-	Increased	4	14.20% (11.79-17.00)			0.0001	0.000	S92 Fig
Glucos (mmol/	e L;	Mean	7	6.415 (6.061-6.769)	0.0001	82.01			S93 Fig
norma range 3· 6·1)	l 9-	Increased	4	49.12% (38.10-60.22)			0.877	83.073	S94 Fig
P (1	otas mmo	sium pl/L)	10	3.905 (3.803-4.008)	0.0001	32.07			S95 Fig
aminotr	Alar ansf (U/	nine ferase/ALT L)	18	26.358 (24.06-28.65)	0.0001	91.89			S96 Fig
(1	Sodium (mmol/L)		10	138.56 (138.12-139.00)	0.0001	70.66			S97 Fig
Album	n	Mean	12	37.488 (34.81-40.16)	0.0001	97.81		-	S98 Fig
(g/L, 1a) 35–57	ige)	Decreased	6	14.77% (3.97-42.06)			0.0165	96.77	S99 Fig
		Mean	22	284.265 (262.11-306.41)	0.0001	95.57			S100 Fig
Lactat debydro	e	≤245	5	37.73% (20.98-58.03)	0.234	87.19			
nase/LD	θH	245≥	10	56.43% (44.56-67.61)	0.287	91.14	0.745	89.57	S101 Fig
		Total	15	51.71% (41.47-61.81)					
al		CXR Unilateral Pneumoni a	6	16.29% (9.26-27.04)	0.0001	83.78	-		S102 Fig
)gic nas		Chest X- Ray Bilateral Pneumonia	21	78.25% (60.59-8938)	0.0032	97.72			S103 Fig
diolc		Absence of both GGOs and consolidati on	3	12.78% (4.72-30.24)	0.0005	71.58			S104 Fig
Ra		Presence of GGOs with consolidati on	10	46.83% (34.26-59.82)	0.0001	88.26			S105 Fig

GGOs	30	58.37% (45.11-70.52)	0.0001	97.03	 	S106 Fig
consolida tion	18	29.43% (20.2-40.71)	0.0006	93.83	 	S107 Fig
Crazy- paving	7	22.55% (14.26-33.76)	0.0001	84.75	 	S108 Fig
Vascular enlargem ent	4	43.59% (6.34-89.82)	0.8356	98.67	 	S109 Fig
Interlobu lar septal thickenin g in a crazy- paving pattern	3	62.94% (56.24-69.18)	0.0002	0 (Fixed effect size)	 	S110 Fig
Air Broncho gram sign	6	61.79% (50.02-72.32)	0.0497	79.89	 	S111 Fig
Air trapping	1	11.76% (5.38-23-81)	0.0001	0 (Fixed effect size)	 	S112 Fig
Nodular opacities	4	13.99% (5.53-31.13)	0.0005	80.12	 	S113 Fig
Reversed halo sign	2	2.54% (0.96-6.58)	0.0001	0.000 1	 	S114 Fig
Discrete pulmonar y Nodules with halo sign	1	17.65% (9.45-30.57)	0.0001	0 (Fixed effect size)	 	S115 Fig
Discrete pulmonar y Nodules without halo sign	1	3.92% (0.98-14.37)	0.0001	0 (Fixed effect size)	 	S116 Fig
Bronchus deformati on due to fibrosis and strip like lesions	1	47.62% (27.85-68.16)	0.8273	0 (Fixed effect size)	 	S117 Fig
Lymphad enopathy	2	4.74% (2.48-8.85)	0.0001	0 (Fixed effect size)	 	S118 Fig
Pleural retraction sign	1	56.45% (43.97-68.17)	0.3110	0 (Fixed effect size)	 	S119 Fig
Pleural effusion	10	7.15% (4.65-10.84)	0.0001	53.92	 	S120 Fig

Number of fibrous stripes	2	34.65% (8.23-75.80)	0.4838	94.65			S121 Fig
Number of patchy Consolida tion at CT	2	24.2% (15.73-35.31)	0.0001	42.86			S122 Fig
Periphera l	8	66.34% (47.89-80.86)	0.2821	92.40			
Central	3	1.47% (0.61-3.48)	0.0001	0 (Fixed effect size)	0.0001	94.90	S123 Fig
Both	5	36.2% (22.13-53.11)	0.0813	93.36			
Upper	2	83.29% (73.31-90.05)	0.0001	0 (Fixed effect size)			
Middle	2	72.64% (40.62-91.16)	0.1582	80.69	0.0001	75.34	S124 Fig
Lower	2	91.70% (82.70-96.23)	0.0001	0 (Fixed effect size)			
Number of Patchy or punctate ground glass opacities	2	64.73% (15.97-94.66)	0.5997	97.51			S125 Fig
Patients number of 1 affected lobe	6	15.77% (9.11-25.91)	0.0001	76.24			
Patients number of 2 affected lobes	6	14.08% (11.01-17.83)	0.0001	0 (Fixed effect size)			
Patients number of 3 affected lobes	6	9.82% (7.28-13.12)	0.0001	0 (Fixed effect size)	0.0001	84.19	S126 Fig
Patients number of 4 affected lobes	6	18.36% (14.89-22.43)	0.0001	0 (Fixed effect size)			
Patients number of 5	6	34.59% (27.32-42.66)	0.0003	56.47			

	affected lobes						
	Interstitia l abnormal ity	1	13.01% (11.15-15.13)	0.0001	0 (Fixed effect size)		S127 Fig
	Corticost eroid	18	27.17% (20.54-35)	0.0001	91.77	 	S128 Fig
	Intraveno us immunog lobulin therapy	8	27.79% (14.6-46.43)	0.021	96.66	 	S129 Fig
	Interfero n	4	68.78% (10.63-97.61)	0.5958	96.99	 	S130 Fig
	Non- Invasive ventilatio n	16	21.48% (12.02-35.4)	0.0003	96.16	 	S131 Fig
tment	Invasive mechanic al Ventilatio n	8	5.71% (2.91-10.93)	0.0001	76.19	 	S132 Fig
rea	Immunog lobulin therapy	9	25.93% (16.1-38.97)	0.0006	93.18	 	S133 Fig
E	Nasal cannula	8	59.88% (51.54-67.69)	0.020	72.66	 	S134 Fig
	Oxygen therapy	7	72% (47.85-87.82)	0.0725	97.89	 	S135 Fig
	CRRT	6	7.92% (4.63-13.25)	0.0001	57.49	 	S136 Fig
	ЕСМО	4	2.06% (0.42-9.39)	0.0001	90.39	 	S137 Fig
	Antifung al	5	6.7% (1.98-2.033)	0.0001	94.56	 	S138 Fig
	Antibiotic	16	75.09% (61.65-84.97)	0.0006	94.81	 	S139 Fig
	Antiviral	18	86.45% (76.34-92.65)	0.0001	96.58	 	S140 Fig
	Discharge	19	25.88% (15.91-39.18)	0.0008	97.08	 	S141 Fig
mes	Recovery	3	6.49% (0.11-80.93)	0.2036	97.68	 	S142 Fig
Outco	Remaine d in hospital	24	62.87% (47.43-76.06)	0.1012	97.24	 	S143 Fig
	Death	25	4.55% (2.49-8.15)	0.0001	98.09	 	S144 Fig

Click here to access/download Necessary additional data Cover letter.pdf Table 1- A Systemic Review and Meta-analysis COVID-19 Clinical Characteristics, Complications and comorbidity

		NO Study	(CI-95%)	P-value	I ² (%)	P-value Subgroup	I ² (%) Subgroup	Supplementary Data/ Figures
	Direct	37	62.71% (52.22-72.12)	0.0181	96.39			S1 Fig
Exposure History	Indirect	12	41.01% (24.47-59.87)	0.3507	97.42	0.1094	97.18	S2 Fig
	Total	49	57.6% (48.3-66.4)					S3 Fig
Age		64	49.43 (47.44-51.42)	0.0001	98.10			S4 Fig
	Male	68	52.65% (51-54.3)	0.0016	58.56			
Gender	Female	67	47.28% (45.56-49)	0.0019	62.31	0.9008	69.57	S5 Fig
	Total	136						
BMI		4	23.26 (22.28-24.23)	0.0001	85.61			S6 Fig
Occupation	HCWs	5	33.5% (12-64.9)	0.302	96.72			S7 Fig
	Acute respirato ry distress syndrome (ARDS)	8	30.4% (14.4-53.1)	0.088	91.48			S8 Fig
	Acute Cardiac Injury	6	10.16% (6.34-15.9)	0.0001	65.47			S9 Fig
SUIC	Acute Kidney Injury	7	4.4% (1.46-12.54)	0.0001	92.1			S10 Fig
nditio	Acute Respirato ry Injury	7	5.49% (3.26-9.09)	0.0001	63.65			S11 Fig
COI	Septic Shock	7	4.61% (1.97-10.41)	0.0001	80.86			S12 Fig
bid	Diabetes	35	11.19% (9.19-13.55)	0.0001	66.95			S13 Fig
nor	Hyperten sion	34	17.47% (13.55-22.24)	0.0001	88.64			S14 Fig
Com	Cardiova scular diseases (CVD)	23	11.16% (6.87-17.65)	0.0001	94.79			S15 Fig
	COPD	20	3.56% (2.38-5.32)	0.0001	61.75			S16 Fig
	Nervous system	4	3.5% (1.26-9.31)	0.0001	71.3			S17 Fig
	Malignan cies	23	3.2% (2.33-4.38)	0.0001	26.56			S18 Fig
	Chronic medical illness	5	22.25% (10.62-40.79)	0.0053	90.33			S19 Fig

		Endocrin e system diseases	3	8.3% (5.4-12.4)	0.0001	6.44 (Fixed effect size)			S20 Fig
		Digestive system diseases	7	4.62% (2.47-8.46)	0.0001	75.85			S21 Fig
		Chronic kidney diseases	12	3.05% (1.59-6.78)	0.0001	67.87	ł	ł	S22 Fig
	Chronic liver diseases		14	5.94% (3.51-9.9)	0.0001	80.77	-	ł	S23 Fig
	Fev	/er	60	82.72% (77.87-86.68)	0.0001	95.24			S24 Fig
_	Ch	ill	11	15.02% (7.57-27.61)	0.001	95.13			S25 Fig
	le	<37.3	10	19.16% (10.55-32.26)	0.0001	96.3			
	atur ()	>39	15	14.1% (8.12-23.35)	0.0001	94.02			
	o.C	37.3-38	14	32.38% (25.7-39.87)	0.0001	87.12	0.004	91.87	S26 Fig
	Ten	38.1-39	14	33.39% (22.96-40.51)	0.0001	86.39			
			53						
	Cough		62	57.69% (50.72-64.37)	0.0307	95.62			S27 Fig
us	Sore throat		23	10.18% (6.83-14.91)	0.0001	90.59	-		S28 Fig
sympton	Rhino	rrhea	7	5.9% (3.47-9.17)	0.0001	0 (Fixed effect size)	-		S29 Fig
n and	Shortness	of breath	11	13.61% (5.98-28.06)	0.0001	94.17			S30 Fig
Sig	Chest ti	ghtness	14	14.55% (9.73-21.19)	0.0001	89.31			S31 Fig
	Chest	pain	11	3.19% (1.02-9.54)	0.0001	93.64			S32 Fig
	Dysp	onea	22	20.87% (13.94-30.04)	0.0001	92.86			S33 Fig
	Mya	lgia	52	25.20% (19.62-31.73)	0.0001	94.19			S34 Fig
	Sputum p	roduction	20	19.93% (13.38-28.63)	0.0001	94.59	ł	-	S35 Fig
	Head	ache	42	9.08% (7.08-11.58)	0.0001	83.10			S36 Fig
	Hemo	ptysis	9	3.55% (2.00-6.22)	0.0001	61.99			S37 Fig
	Nausea and	l vomiting	21	6.00% (4.54-7.90)	0.0001	35.81			S38 Fig
	Diar	rhea	43	7.49% (5.87-9.51)	0.0001	72.42			S39 Fig

	Anosemia		2	6.65% 20.1-19.84	0.0001	78.44			S40 Fig
	Anor	exia	2	32.59% 20.02-48.27	0.0303	80.45			S41 Fig
	Ra	sh	1	8.33% 2.09-27.88	0.0012	68.89			S42 Fig
		Incubatio n period	8	5.540 (5.008-6.073)	0.0001	98.07			S43 Fig
		Illness onset to dyspnea	11	13.303 (11.025-15.581)	0.0001	99.32	-		S44 Fig
		First hospital to ICU	12	4.798 (3.438-6.158)	0.0001	99.47			S45 Fig
Ti	ming(days)	Onset of symptom to hospital	11	5.935 (4.664-7.201)	0.0001	98.90	-		S46 Fig
		Onset of symptom to ICU	4	6.092 (1.594-10.590)	0.007	99.78			S47 Fig
		ARDS and needed ICU	2	9.5 (6.56-12.44)	0.0001	100			S48 Fig
		Days symptom to death	3	16.647 (13.772-19.523)	0.0001	97.73			S49 Fig
	Prossura	Diastolic pressure	5	87.887 (82.570-93.205)	0.0001	96.62			S50 Fig
	(mmHg)	Systolic pressure	6	126.56 (123.696- 129.423)	0.0001	63.17			S51 Fig
	PO ₂	Mean	7	88.690 (49.211- 128.169)	0.0001	99.93			S52 Fig
(kj	pa, range80- 100)	Decrease d	3	26.72% (12.52-48.15)			0.034	83.779	853 Fig
		Total		26.72% (12.52-48.15)			0.034		555 Fig
	O₂ sat ((range ≥9	5%))	3	95.141% (92.991-97.291)	0.0001	99.08			S54 Fig
	Heart ra (beats per n	ate ninute)	9	89.272 (87.870-90.674)	0.0001	60.06			S55 Fig
	Respiratory rate		13	14.335 (9.938-18.731)	0.0001	99.84			S56 Fig
ý.		Mean	22	5.063 (4.74-5.37)	0.0001	85.18			S57 Fig
ratory	WBC count, ×	Mean <4	22 12	5.063 (4.74-5.37) 17.97% (10.17-29.78)	0.0001 0.0001	85.18 94.18			S57 Fig
Laboratory	WBC count, × 10 ⁹ per L Range	Mean <4 >10	22 12 10	5.063 (4.74-5.37) 17.97% (10.17-29.78) 14.45% (10.28-19.94)	0.0001 0.0001 0.005	85.18 94.18 61.43	0.0001	 93.21	S57 Fig S58 Fig

			(41.11-67.00)					
	Total		23.53% (18.81-29.00)					
Leucocytes	Mean	10	5.93 (5.11-6.74)	0.0001	95.82			S59 Fig
(× 10 ⁹ per	<10	10	16.25% (6.05-36.89)	0.003	97.55			
range $3.5-$ 9.5) range	>10	11	24.76% (17.39-33.96)	0.0001	88.73	0.0001	95.88	S60 Fig
y 5) range	Total		23.40% (16.80-31.61)					
Lymphocy	Mean	34	1.0190 (0.9509-1.0872)	0.0001	97.98			S61 Fig
$(\times 10.9$	<1.0	23	32.89% (22.65-45.07)	0.0001	93.43			
(range 1 1 - 3 2)	>1.0	15	39.56% (30.32-49.61)	0.001	90.55	0.0006	92.34	S62 Fig
range	Total		43.04% (40.93-45.18)					
	Mean	34	3.941 (3.599-4.283)	0.0001	94.18			S63 Fig
Neutrophil count, ×	Decrease d	9	9.37% (5.71-1.50)	0.0001	76.05			
10 ⁹ per L range	Increased	12	13.14% (7.61-21.73)	0.0001	88.42	0.0001	85.64	S64 Fig
	Total	21	10.88% (7.55-15.42)					
Hemoglobi n (g/L;	Mean	21	134.964 (131.981- 137.947)	0.0001	90.36			S65 Fig
normal range	Decrease d	5	37.35% (24.62-52.11)	0.092	78.07			
130·0– 175·0) range	Total	21	37.35% (24.62-52.11)			0.092	90.36	S66 Fig
	Mean	30	202.756 (191.530- 213.982)	0.0001	98.62			S67 Fig
count, ×	<100	12	11.48 (06.49-19.49)	0.0001	91.89			
range	≥100	12	39.81 (16.68-68.59)	0.4974	95.09	0.0001	93.82	S68 Fig
	Total	24	15.54 (9.56-24.24)					
	Mean	16	12.18 (11.62-12.74)	0.0001	98.59			S69 Fig
Prothrom	Decrease d	3	8.28 (1.28-38.59)	0.0151	93.75			
(s Range)	Increased	5	8.65 (5.56-13.22)	0.0001	57.88	0.0001	53.35	S70 Fig
	Total	8	8.63 (5.62-13.04)					
Activated partial	Mean	11	32.21 (29.40-35.02)	0.0001	98.93			S71 Fig

thrombopl	Decrease	3	7.38%	0.000	92.55			
astin time	d	5	(10.14-32.15)	0.000	72.00			
(s Kange)	Increased	6	(7.42-26.36)	0.0001	91.25	0.0001	91.75	S72 Fig
	Total	9	13.14% (7.05-23.17)					
D-dimer	Mean	16	0.548 (0.478-0.618)	0.0001	99.92			S73 Fig
(μg/L; normal	Increased	8	30.89% (21.09-42.77)	0.002	92.47	0.002	02.47	874 Eia
1.5) Range	Total		30.89% (21.09-42.77)			0.002	92.47	574 Fig
AST	Mean	10	28.951 (25.243-32.659)	0.0001	97.06		-	S75 Fig
(10/L, range 8–	Increased	5	22.09% (17.43-27.58)	0.0001	56.10	0.0001	02 87	\$76 Fig
40) Kange	Total		22.09% (17.43-27.58)			0.0001	92.87	570 Fig
	Mean	23	68.47 (65.22-71.07)	0.0001	95.29		-	S77 Fig
Creatinine	>133	7	48.21% (19.61-78.03)	0.916	95.18	0.0001	95.29	
(µmor/L range)	≤133	10	5.04% (2.55-9.73)	0.0001	81.71			S78 Fig
	Total	17	9.03% (5.04-15.66)					
Тгор	oonin	4	4.12% (2.78-5.46)	0.0001	98.80			S79 Fig
Bilirubin (U/L;	Total bilirubin	21	10.23% (9.32-11.14)	0.0001	98.45			S80 Fig
normal range 50·0– 310·0) range	Increased bilirubin	9	6.61% (3.97-10.79)			0.0001	74.42	S81 Fig
Urea nitrogen	Mean	17	4.702% (4.39-5.01)	0.0001	93.72			S82 Fig
(mmol/L, range2.6– 7.5)	Decrease d	4	22.94% (6.26-57.03)			0.1121	93.66	S83 Fig
	Total	18	0.22% (0.18-0.53)	0.0001	99.93		-	S84 Fig
Procalcito nin (ng/mL)	<0.1	5	43.65% (20.04-70.54)	0.6575	88.59			
	0.1 to <0.25	3	21.32% (14.1-30.92)	0.0001	1.35 (Fixed effect size)	0.0001	93.93	S85 Fig
	0.25 to 0.5	5	17.78% (3.4-57.05)	0.093	87.89			
	>0.5	9	11.47% (3.45-31.98)	0.0002	96.08			
CRP (mg/dL)	Mean	28	37.52% (34.16-40.87)	0.0001	99.9			S86 Fig

		CRP >60	14	56.8% (33.75-77.23)			0.5716	97.72	S87 Fig
	Erythrocyte	Mean	5	41.11 (17.21-65.02)	0.0007	87.09			S88 Fig
	Creatine kinase	Mean	18	105.34 (95.25-115.42)	0.0001	99.70			S89 Fig
	(U/L; normal	≤185	6	38.53% (12.81-72.79)	0.520	96.32			
	range 50·0–	≥185	8	14.68% (9.55-21.91)	0.0001	81.91	0.0001	93.94	S90 Fig
	310·0) range	Total	13	16.41% (10.99-23.78)					
	Myoglobin (ng/mL;	Mean	4	43.421 (26.45-60.38)	0.0001	99.96			S91 Fig
	normal range 0·0– 146·9) range	Increased	4	14.20% (11.79-17.00)			0.0001	0.000	S92 Fig
	Glucose (mmol/L;	Mean	7	6.415 (6.061-6.769)	0.0001	82.01			S93 Fig
	normal range 3·9– 6·1)	Increased	4	49.12% (38.10-60.22)			0.877	83.073	S94 Fig
	Potassium (mmol/L)		10	3.905 (3.803-4.008)	0.0001	32.07			S95 Fig
	Alanine aminotransferase/ALT (U/L)		18	26.358 (24.06-28.65)	0.0001	91.89			S96 Fig
	Sodi (mmo	um ol/L)	10	138.56 (138.12-139.00)	0.0001	70.66			S97 Fig
	Albumin	Mean	12	37.488 (34.81-40.16)	0.0001	97.81			S98 Fig
	(g/L, range 35–57)	Decreased	6	14.77% (3.97-42.06)			0.0165	96.77	S99 Fig
		Mean	22	284.265 (262.11-306.41)	0.0001	95.57			S100 Fig
	Lactate dehydroge	≤245	5	37.73% (20.98-58.03)	0.234	87.19			
	nase/LDH	245≥	10	56.43% (44.56-67.61)	0.287	91.14	0.745	89.57	S101 Fig
		Total	15	51.71% (41.47-61.81)					
•	ogi	CXR Unilateral Pneumoni a	6	16.29% (9.26-27.04)	0.0001	83.78			S102 Fig
•	cal	Chest X- Ray Bilateral Pneumonia	21	78.25% (60.59-8938)	0.0032	97.72			S103 Fig
F	Rad	Absence of both GGOs and consolidati on	3	12.78% (4.72-30.24)	0.0005	71.58			S104 Fig

	Presence of GGOs		16 830/				
	with consolidati on	10	(34.26-59.82)	0.0001	88.26		 S105 Fig
	GGOs	30	58.37% (45.11-70.52)	0.0001	97.03		 S106 Fig
	consolida tion	18	29.43% (20.2-40.71)	0.0006	93.83		 S107 Fig
	Crazy- paving	7	22.55% (14.26-33.76)	0.0001	84.75		 S108 Fig
	Vascular enlargem ent	4	43.59% (6.34-89.82)	0.8356	98.67	-	 S109 Fig
	Interlobu lar septal				0		
	thickenin g in a	3	62.94% (56.24-69.18)	0.0002	(Fixed effect		 S110 Fig
	crazy- paving pattern				size)		
	Air Broncho gram sign	6	61.79% (50.02-72.32)	0.0497	79.89	-	 S111 Fig
	Air	1	11.76% (5.38-23-81)	0.0001	0 (Fixed effect		 S112 Fig
	Nodular		13.99%	0.0007	size)		C112 E'
	opacities Boyorgod	4	(5.53-31.13)	0.0005	80.12		 5113 Fig
	halo sign	2	(0.96-6.58)	0.0001	1		 S114 Fig
	Discrete pulmonar y Nodules	1	17.65% (9.45-30.57)	0.0001	0 (Fixed effect		 S115 Fig
	with halo sign		(*********		size)		
	Discrete pulmonar y Nodules	1	3.92% (0.98-14.37)	0.0001	0 (Fixed effect	-	 S116 Fig
	without halo sign		(size)		
	Bronchus deformati				0		
	on due to fibrosis and strip	1	47.62% (27.85-68.16)	0.8273	(Fixed effect		 S117 Fig
	like lesions				size)		
	Lymphad enopathy	2	4.74% (2.48-8.85)	0.0001	0 (Fixed effect size)		 S118 Fig

	1							
	Pleural retraction sign	1	56.45% (43.97-68.17)	0.3110	0 (Fixed effect size)	-	-	S119 Fig
	Pleural effusion	10	7.15% (4.65-10.84)	0.0001	53.92	-		S120 Fig
	Number of fibrous stripes	2	34.65% (8.23-75.80)	0.4838	94.65			S121 Fig
	Number of patchy Consolida tion at CT	2	24.2% (15.73-35.31)	0.0001	42.86			S122 Fig
	Periphera l	8	66.34% (47.89-80.86)	0.2821	92.40			
	Central	3	1.47% (0.61-3.48)	0.0001	0 (Fixed effect size)	0.0001	94.90	S123 Fig
	Both	5	36.2% (22.13-53.11)	0.0813	93.36			
	Upper	2	83.29% (73.31-90.05)	0.0001	0 (Fixed effect size)	0.0001	75.34	S124 Fig
	Middle	2	72.64% (40.62-91.16)	0.1582	80.69			
	Lower	2	91.70% (82.70-96.23)	0.0001	0 (Fixed effect size)			
	Number of Patchy or punctate ground glass opacities	2	64.73% (15.97-94.66)	0.5997	97.51			S125 Fig
	Patients number of 1 affected lobe	6	15.77% (9.11-25.91)	0.0001	76.24			
	Patients number of 2 affected lobes	6	14.08% (11.01-17.83)	0.0001	0 (Fixed effect size)	0.0001	84.19	S126 Fig
	Patients number of 3 affected lobes	6	9.82% (7.28-13.12)	0.0001	0 (Fixed effect size)			
	Patients number	6	18.36% (14.89-22.43)	0.0001	0			

	of 1				(Fived		
	014 offootod				effect		
	labor				size)		
	lobes				SILC)		
	Patients number of 5 affected lobes	6	34.59% (27.32-42.66)	0.0003	56.47		
	Interstitia l abnormal ity	1	13.01% (11.15-15.13)	0.0001	0 (Fixed effect size)		S127 Fig
	Corticost eroid	18	27.17% (20.54-35)	0.0001	91.77	 	S128 Fig
	Intraveno us immunog lobulin therapy	8	27.79% (14.6-46.43)	0.021	96.66	 	S129 Fig
	Interfero n	4	68.78% (10.63-97.61)	0.5958	96.99	 	S130 Fig
	Non- Invasive ventilatio n	16	21.48% (12.02-35.4)	0.0003	96.16	 	S131 Fig
Treatment	Invasive mechanic al Ventilatio n	8	5.71% (2.91-10.93)	0.0001	76.19	 	S132 Fig
	Immunog lobulin therapy	9	25.93% (16.1-38.97)	0.0006	93.18	 	S133 Fig
	Nasal cannula	8	59.88% (51.54-67.69)	0.020	72.66	 	S134 Fig
	Oxygen therapy	7	72% (47.85-87.82)	0.0725	97.89	 	S135 Fig
	CRRT	6	7.92% (4.63-13.25)	0.0001	57.49	 	S136 Fig
	ЕСМО	4	2.06% (0.42-9.39)	0.0001	90.39	 	S137 Fig
	Antifung al	5	6.7% (1.98-2.033)	0.0001	94.56	 	S138 Fig
	Antibiotic	16	75.09% (61.65-84.97)	0.0006	94.81	 	S139 Fig
	Antiviral	18	86.45% (76.34-92.65)	0.0001	96.58	 	S140 Fig
S	Discharge	19	25.88% (15.91-39.18)	0.0008	97.08	 	S141 Fig
tcome	Recovery	3	6.49% (0.11-80.93)	0.2036	97.68	 	S142 Fig
Out	Remaine d in hospital	24	62.87% (47.43-76.06)	0.1012	97.24	 	S143 Fig

Death 25 4.55% (2.49-8.15) 0.000	98.09			S144 Fig
---	-------	--	--	----------

From: Moher D, Liberall A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

Click here to access/download Supplementary Material renamed_35358.DOC S2 File. The review protocol which has been registered in PROSPERO International Prospective Register of Systematic

Click here to access/download Supplementary Material S2 File.pdf S3 File. Newcastle-Ottawa scale checklist.

Click here to access/download Supplementary Material S3 File.pdf

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3631253

S4 File. Data characteristics (Full details) (MS Excel).

Click here to access/download Supplementary Material S4 File.xlsx Supplementary Figures

Click here to access/download Supplementary Material Supplementary Figures.rar